

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 1 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

LINUX 2.6.33.7.2-RT30

© Copyright Dedicated Systems Experts NV. All rights reserved, no part of the

contents of this document may be reproduced or transmitted in any form or by any

means without the written permission of Dedicated Systems Experts NV,

Diepenbeemd 5, B-1650 Beersel, Belgium.

Authors: Luc Perneel (1, 2), Hasan Fayyad-Kazan (2) and Martin Timmerman (1, 2, 3)

1: Dedicated Systems Experts, 2: VUB-Brussels, 3: RMA-Brussels

Disclaimer

Although all care has been taken to obtain correct information and accurate test

results, Dedicated Systems Experts, VUB-Brussels, RMA-Brussels and the authors

cannot be liable for any incidental or consequential damages (including damages

for loss of business, profits or the like) arising out of the use of the information

provided in this report, even if these organisations and authors have been advised

of the possibility of such damages.

http://www.dedicated-systems.com

E-mail: info@dedicated-systems.com

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 2 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

EVALUATION REPORT LICENSE

This is a legal agreement between you (the downloader of this document) and/or your company and the
company DEDICATED SYSTEMS EXPERTS NV, Diepenbeemd 5, B-1650 Beersel, Belgium.
It is not possible to download this document without registering and accepting this agreement on-line.

1. GRANT. Subject to the provisions contained herein, Dedicated Systems Experts hereby grants you a non-

exclusive license to use its accompanying proprietary evaluation report for projects where you or your company
are involved as major contractor or subcontractor. You are not entitled to support or telephone assistance in
connection with this license.

2. PRODUCT. Dedicated Systems Experts shall furnish the evaluation report to you electronically via Internet. This

license does not grant you any right to any enhancement or update to the document.

3. TITLE. Title, ownership rights, and intellectual property rights in and to the document shall remain in Dedicated

Systems Experts and/or its suppliers or evaluated product manufacturers. The copyright laws of Belgium and all
international copyright treaties protect the documents.

4. CONTENT. Title, ownership rights, and an intellectual property right in and to the content accessed through the

document is the property of the applicable content owner and may be protected by applicable copyright or other
law. This License gives you no rights to such content.

5. YOU CANNOT:

– You cannot, make (or allow anyone else make) copies, whether digital, printed, photographic or others, except
for backup reasons. The number of copies should be limited to 2. The copies should be exact replicates of the
original (in paper or electronic format) with all copyright notices and logos.

– You cannot, place (or allow anyone else place) the evaluation report on an electronic board or other form of on
line service without authorisation.

6. INDEMNIFICATION. You agree to indemnify and hold harmless Dedicated Systems Experts against any damages

or liability of any kind arising from any use of this product other than the permitted uses specified in this
agreement.

7. DISCLAIMER OF WARRANTY. All documents published by Dedicated Systems Experts on the World Wide Web

Server or by any other means are provided "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. This disclaimer of
warranty constitutes an essential part of the agreement.

8. LIMITATION OF LIABILITY. Neither Dedicated Systems Experts nor any of its directors, employees, partners or

agents shall, under any circumstances, be liable to any person for any special, incidental, indirect or
consequential damages, including, without limitation, damages resulting from use of OR RELIANCE ON the
INFORMATION presented, loss of profits or revenues or costs of replacement goods, even if informed in advance
of the possibility of such damages.

9. ACCURACY OF INFORMATION. Every effort has been made to ensure the accuracy of the information presented

herein. However Dedicated Systems Experts assumes no responsibility for the accuracy of the information.
Product information is subject to change without notice. Changes, if any, will be incorporated in new editions of
these publications. Dedicated Systems Experts may make improvements and/or changes in the products and/or
the programs described in these publications at any time without notice. Mention of non-Dedicated Systems
Experts products or services is for information purposes only and constitutes neither an endorsement nor a
recommendation.

10. JURISDICTION. In case of any problems, the court of BRUSSELS-BELGIUM will have exclusive jurisdiction.

Agreed by downloading the document via the internet.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 3 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

1 Document Intention .. 6

1.1 Purpose and scope .. 6

1.2 Document issue: the 2.9 framework .. 6

1.3 Conventions ... 6

1.4 Related documents .. 7

2 Introduction .. 8

2.1 Overview .. 8

2.2 Evaluated (RTOS) product ... 9

2.3 Supported CPU .. 9

3 Evaluation Results summary ... 10

3.1 Positive points .. 10

3.2 Negative points .. 10

3.3 Ratings ... 11

4 Installation and BSP .. 12

4.1 Installation .. 12

4.1.1 Installation on Host ... 12

4.1.2 Installation on target ... 12

4.2 Setting up the kernel configuration .. 13

4.2.1 Kconfig .. 13

4.2.2 “make” config .. 14

4.2.3 .config ... 17

5 Qualitative evaluation .. 18

5.1 OS Architecture .. 18

5.1.1 The Linux scheduler dissected ... 18

5.1.2 Memory Management .. 24

5.1.3 Interrupt Handling ... 28

5.1.4 Synchronisation mechanisms ... 30

5.1.5 Other RT_PREEMPT improvements .. 31

5.1.6 Other Linux issues .. 31

5.2 API richness ... 32

5.2.1 Task Management .. 33

5.2.2 Clock and Timer ... 34

5.2.3 Memory Management .. 34

5.2.4 Interrupt Handling (in kernel) .. 35

5.2.5 Synchronization and Exclusion Objects ... 36

5.2.6 Communication and Message Passing Objects ... 38

5.3 Development methodology .. 39

5.4 Documentation ... 40

5.5 OS Configuration .. 41

5.6 Installation and BSP ... 42

5.7 Internet Support ... 43

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 4 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

5.8 Development tools ... 44

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 5 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

DOCUMENT .CHANGE LOG

Issue

No.

Revised

Issue Date

Para's / Pages

Affected

Reason

for Change

1.0 25 Mar 2011 All Initial version

1.01 2 April 2011 some Typo changes

1.02 14 April 2011 ALL Rephrasing some statements and commenting

1.03 03 May 2011 ALL idem

1.04 05 May 2011 ALL Idem

1.05 13 May 2011 ALL Almost Final

1.06 16 May 2011 ALL Almost Final + font changes

1.07 30 May 2011 All Final

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 6 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

1 Document Intention

1.1 Purpose and scope

This document presents the qualitative evaluation results of the real-time Linux operating system

(Linux with its real-time patches). The testing results of this operating system employed on an x86

processors can be found on our website. (www.dedicated-systems.com)

The layout and the content of this report follow the one depicted in “The evaluation test report definition”

[Doc. 3] and “The OS evaluation template” [Doc. 4]. See section 1.4 of this document for more detailed

references. Therefore these documents have to be seen as an integral part of this report!

Due to the tightly coupling between these documents, the framework version of “The evaluation test report

definition” has to match the framework version of this evaluation report (which is 2.9). More information

about the documents and tests versions together with their corresponding relation can be found in “The

evaluation framework” see [Doc. 1] in section 1.4 of this document.

1.2 Document issue: the 2.9 framework

This document shows the results in the scope of the evaluation framework 2.9.

1.3 Conventions

Throughout this document, we use certain typographical conventions to distinguish technical terms. Our

used conventions are the following:

Throughout this document, we use certain typographical conventions to distinguish technical terms.

Our used conventions are the following:

 Bold Italic for OS Objects

 Bold for Libraries, packets, directories, software, OSs...

 Courier New for system calls (APIs...)

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 7 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

1.4 Related documents

Those are the documents that are closely related to this document. They can all be downloaded using

following link:

http://www.dedicated-systems.com/encyc/buyersguide/rtos/evaluations

Doc. 1 The evaluation framework
This is the evaluation framework document. It indicates the available documents, their names,
numbers, versions and their corresponding relations. It is the base document of the evaluation
framework.
EVA-2.9-GEN-01 Issue: 1 Date: April 19, 2004

Doc. 2 What is a good RTOS?
This document presents the criteria that Dedicated Systems Experts use to give an operating
system the label “Real-Time”. The evaluation tests are based upon the criteria defined in this
document.
EVA-2.9-GEN-02

Doc. 3 The evaluation test report definition
This document presents the different tests issued in this report together with the flowcharts
and the generic pseudo code for each test. Test labels are all defined in this document.
EVA-2.9-GEN-03 Issue: 1 April 19, 2004

Doc. 4 The OS evaluation template
This document presents the layout used for all reports in a certain framework.
EVA-2.9-GEN-04 Issue: 1 April 19, 2004

Doc. 5 Linux 2.6.33.7.2-RT30 on an X86 platform.
This document presents the test results of the OS on a specific platform
EVA-2.9-TST-LNX-x86-104 Issue: 1 May 5, 2011

http://www.dedicated-systems.com/encyc/buyersguide/rtos/evaluations

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 8 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

2 Introduction

This chapter talks about: 1) the OS that we are going to test and evaluate, 2) the real time patch

integrated in this OS to achieve some real time performance and behaviour tests, 3) the library used for

interaction between the testing applications and the kernel, 4) the CPUs that such OS supports.

2.1 Overview

The evaluation project started in 1995 and as such accumulates a long experience with different

(RT) OS. Today more and more embedded systems are equipped with Linux solutions using more or less

real-time patches. Different vendors like MontaVista, Windriver, and Lynuxworks have now Linux variants

in their product portfolio.

Since the kernel version 2.4, a lot of improvements regarding real-time behaviour found their way into the

standard “Vanilla” kernel. There is a well maintained real-time patch available (both have their origins from

Ingo Molnar) called RT_PREEMPT patch. Remark that some real-time features (like priority-inheritance

mutexes, introduced in version 2.6.18) are already in the Vanilla kernel.

We believed that it is the time to test this kernel by our standard real-time behaviour evaluation framework

and find out how well it behaves.

For this evaluation, we used the standard glibc library as the µClibc package does not include yet the

Native POSIX Thread Library (NPTL). Moreover, µClibc also does not use futexes which means that it

also does not have any support for priority inheritance (which must be available when considering real-time

behaviour). Further µClibc uses internal protection systems (mutex, semaphores) and signals for the

pthread POSIX layer, which behaves differently while compared to the usage of direct NPTL calls. From a

real-time point of view, using µClibc in its current form makes the kernel real-time support unavailable in

user space. It has to be said that there is an active NPTL branch in the µClibc code base. Therefore we

suspect that it is only a matter of time before it will become available in the official releases.

It is a pity that the µClibc wagon is not yet on the NPTL rail. Using the buildroot, µClibc, and busybox

combo makes it easier to have an embedded Linux platform with a small storage footprint. But without the

NPTL support, real-time applications cannot be used in user space, unless you use direct system calls to

the kernel.

Remark that the RT_PREEMPT patch degrades throughput performance which means that it should be

used only when your project has low latency requirements. This is normal and a fundamental rule in real-

time software: latency improvements have a negative impact on throughput and vice versa. Some quick

measurements using an NFS mount stressing network and disk showed a negative throughput impact

between 5 and 10% by enabling the RT_PREEMPT patch!

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 9 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

2.2 Evaluated (RTOS) product

The operating system OS that will be evaluated is Vanilla Linux 2.6.33.7 with real-time patch

v30.This RT patch was the latest version officially released by OSADL (the Open Source Automation

Development Lab) on December 21, 2010. Being as OSDAL’s latest stable release was our main reason

for testing this version. The RT patches can be found at http://www.kernel.org/pub/linux/kernel/projects/rt/.

The evaluation of this kernel version (2.6.33.7.2-rt30) was performed using several performance and

behaviour tests. The testing results are applicable only to this version as other versions may have other

significant performance figures and behaviour.

The library used between the testing applications and the kernel is the glibc version 2.11.1 as mentioned

before. This interfacing library is important because user applications (when using POSIX calls) can access

the real-time features of the kernel only if this library supports them. Otherwise, direct system calls in user

space applications are needed.

2.3 Supported CPU

 One of the advantages of using Linux OS is its support for most available CPUs around, although

the stability can be sometimes an issue for less common-used platforms. As Linux is used a lot on x86

processors, it is very stable on these PC-like platforms. Also the ARM version is used a lot (portable/low

power devices) and thus very stable.

For less-used platforms, this can however be an issue. For instance, we had to solve some problems for a

customer running Linux on a MIPS based platform due to very sporadic crashes on that platform. We

discovered that they were solved in more recent kernels. This also demonstrates that the open source

community works. However, in real-life embedded software development, it is not a real option to update

each month the kernel to a newer version.

Remark as well that some Linux behaviour can change seriously between versions! So being on the

bleeding edge can be… indeed bleeding, be warned!

http://www.kernel.org/pub/linux/kernel/projects/rt/

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 10 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

3 Evaluation Results summary

Remember that the tested and evaluated product is Vanilla Linux 26.33.7 with RT_PREEMPT

patch v30. If correctly used and configured, the RT_PREEMPT Linux system has the internals to provide

some real-time characteristics.

Compared with the traditional RTOS that supports also memory protection between processes, the worst

case latencies in Linux RT_PREEMPT are still around 5 to 10 times slower (depending on the RTOS you

compare with). Our study and measurements show the latencies are bound and therefore this Linux

version may be labelled Real-Time.

TAKE CARE: Using a wrong driver or wrong configuration can destroy real-time behaviour. You

need to follow the detailed rules described in this document to insure RT-behaviour.

3.1 Positive points

 No license fees

 Source code available

 Extensible

3.2 Negative points

 The real-time characteristics of the OS are present only when everything is configured and

built correctly (and not for all drivers)

 GPL license is not completely free…

 Setting up a complete embedded target from scratch is a daunting task.

 uClibc, which is used a lot in embedded systems, does not have currently NPTL support

and as such cannot provide real-time characteristics to the user level. Thus, glibc should be

used.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 11 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

3.3 Ratings

For a description of the ratings, see [Doc. 3].

RTOS Architecture 0

10 6

OS Documentation 0

10 4

OS Configuration 0

10 6

Internet Components 0

10 10

Development Tools 0

10 6

Installation and BSP 0

10 4

Test Results 0

10 4

Support 0

10 N.A.

dd

Although [Doc. 3] gives a description of the ratings, comparison with other reports on other OS should help you to

understand the scoring.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 12 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

4 Installation and BSP

Installation and BSP 0

10 4

Today, there are enough Linux distributions available which makes it easy to install a host development

system.

However, building a complete environment for a custom board stays a daunting task if you do everything

yourself (build cross-toolchains, libraries, kernel and setup root system). Furthermore you will need a boot

loader (mostly u-boot is used). Luckily, most board vendors deliver their boards with all tools needed and

preconfigured kernel / root file system.

4.1 Installation

Setting up an embedded Linux platform requires two nuts to crack:

 Configuring and adapting the kernel to your platform (setting up the Board Support Package or

BSP).

 Configuring and creating the root file system.

 Our main focus is this report is on the OS real-time behaviour. As an x86 platform is used, installing a

standard Linux could be enough as a starting point. Also there is no need for the cross compilation tools.

All this makes it easy to setup a system. However, creating a root file system for a custom board, then

building everything from scratch is a daunting task. Our experience learned us that there are always some

unexpected problems which require some considerable time to solve. Once you deviate from the most

common used CPU (the X86) to the less used CPU, the more trouble one might expect.

4.1.1 Installation on Host

An Ubuntu 10.04 Linux workstation is used as a host for our testing, the installation of the OS was

easy and quick without encountering any problems as such installation requires only a limited Linux

Knowledge... Today most Linux distributions are easy to install. Only when you go to the “custom build”

systems (e.g. Gentoo), you will need more time and Linux experience to set everything up.

4.1.2 Installation on target

On the target we also installed initially the Ubuntu 10.04 Linux distribution, but in this case a bare

minimum install (using the alternate installer). This is already a bit more complex task as you need to use

terminal text based menus.

Once the system boots and runs, we need only to copy the fresh built kernel from our host to the target

boot partition. This home built kernel with the PREEMPT_RT patch was built in a way that all the required

modules are built in the kernel itself. This makes it possible to boot the target without an initrd RAM disk.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 13 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

The init scripts of the target root file system are adapted in order not to load any other modules. This was

done to avoid building these modules and storing them in the /lib/modules/ (kernel version)/ directory. This

procedure makes it easy to update the kernel.

4.2 Setting up the kernel configuration

Setting up the kernel configuration is needed to define how the kernel will behave. For example,

will it be pre-emptable or not? Also, the kernel configuration should define the hardware it needs to support

(linked in the kernel itself or by using loadable modules). Performing such things can be done via tools

delivered with the Linux kernel source tree. Let us discuss these.

4.2.1 Kconfig

These configuration tools use a collection of Kconfig files (located in the different subdirectories of

the source tree) where options, dependencies, default settings and even comments are stored. An example

is shown in the figure 1.

Figure 1: Kconfig contents

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 14 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

 These Kconfig files are well organised and use an internal tree structure of configuration options. The

configuration tools use these configuration files to provide us with a menu structure or even a graphical

interface for setting up the configuration.

When creating your own BSP for porting a Linux kernel to your platform, the best practice is to add an

extra entry in these configuration files for this custom platform. This limits the dependencies between the

port and the kernel (making it easier to merge later newer kernel releases).

4.2.2 “make” config

To set-up and/or build a kernel, the good old make utility is used. For starting a configuration from

scratch, we need to select the target architecture (CPU type). If you don’t select one, the “x86 architecture”

is used by default.

So you could issue following command for setting up a MIPS target:

$ make config ARCH=mips

When the “config” make option is used, the old Linux configuration system which uses a text based shell

script, will be used to configure the kernel. Today, this is not very useful when someone wants to set-up a

system from scratch because there are too many questions need to be answered and also there is not an

overview about the different sections. Moreover, it is not possible to change just one option without going

through all questions… Luckily the current setting is the default answer.

This configuration option should only be used in exceptional cases. As we don’t find examples of these

cases, we suggest avoiding the usage of this old fashioned approach. Figure 2 presents a screenshot of

the input screen.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 15 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

Figure 2: “make config” screenshot

A far better alternative is to use the menuconfig option instead.

In this case, you have a clear view on the different sections by a menu based selection system (figure 3). It

is displayed without any special graphics, which supports it to be used on a terminal interface.

Another advantage of this option is the possibility to search for specific CONFIG tags which, after the

search will be displayed as a list within the configuration options in tree format, indicating where to find this

specific CONFIG tag. You cannot jump directly to these configuration options from the search screen).

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 16 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

Figure 3: “make menuconfig" screenshot

If you are running an X-Windows environment with the QT toolkit installed, then you can use xconfig. This

shows you the complete tree structure together with a detailed help for each option. It also facilitates

browsing the different options and enables you to have a good understanding of the different kernel

features that should be used on your platform.

“make” gconfig is very similar to xconfig, but it uses the GTK toolkit instead.

In general, you should know the Linux kernel internals in order to setup a configuration that is specific for

your platform. Surely, when the RAM size is limited, disabling some kernel features and modules can

decrease the required memory size for running the kernel. Sometimes you need to take a look in to the

code to understand the impact of some options.

Anyhow, setting up a BSP configuration is a difficult task for any operating system and requires some

(serious) expertise from the developer.

Remark as well that some modules and/or kernel options can affect the real-time performance. So you

should be careful in this issue and it is recommended that you start from a specialised vendor release or

from an OSADL version.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 17 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

4.2.3 .config

The selected configuration settings will be finally stored in a .config file (figure 4). This .config file

will be used by the makefile for setting the compile options, creating configuration header files and

selecting the files that should be compiled.

This file can be easily found in a running Linux distribution in the directory /proc under the name config.gz

(path: /proc/config.gz) (at least if this option is built in the kernel).

This file can also be manually adapted (if you are experienced!) and can be used as a base for setting up a

new configuration (by using make oldconfig).

Figure 4: “.config content”

We started with the ODSAL kernel configuration. We removed only the unnecessary kernel modules in

order to have the minimal kernel footprint. (E.g. we did not put USB support in the kernel). You can see our

configuration as an optimistic “best possible” configuration.

Further, we changed some kernel configurations because their default settings can seriously jeopardize the

real-time behaviour. For more details about this, see our theoretical evaluation report DOC [5].

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 18 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

5 Qualitative evaluation

This report is limited to the qualitative evaluation of the technical aspects of the product under test.

The quantitative test results on a specific platform (e.g. X86) can be found in other reports as [Doc 5].

The scores in this document are given according to: 1) our gathered experiences from evaluating previous

versions of this product; 2) comparison of this product with other competing tested products. Although all

effort has been done to be as rigorous as possible in the scoring, one should accept that they are partially

based on a subjective criterion.

This part of the evaluation has the sole intention to help the application designer in his work. Indeed, each

(commercial) RTOS is using particular architectural approaches and working models. This has a serious

performance and behaviour consequences influencing considerably application designs.

Reading this document helps in understanding how to configure the OS in order to insure RT-

behaviour. We expect the reader to have already a very good knowledge about Linux internals.

5.1 OS Architecture

RTOS Architecture 0

10 6

Linux with the RT_PREEMPT patch has today the necessary features to provide some real-time

behaviour and as such it may be used for handling soft real-time requirements, but only if different

conditions are met.

The Linux operating system was not initially developed with real-time characteristics in mind and this is still

true for the Vanilla kernel (although some real-time improvements were merged in the mainline kernel).

You will need the RT_PREEMPT patch together with a correct build and configured kernel to achieve real-

time characteristics. Even with the RT_PREEMPT patch, some modules can break real-time behaviour.

Remark that not all releases have the same stability required for embedded systems. As such, be sure to

use known stable releases (like the OSADL ones or the ones from the different vendors) and be aware that

the behaviour can change seriously between releases!

5.1.1 The Linux scheduler dissected

This section will be a detailed description about Linux scheduler. We will gradually introduce the

different aspects together with explanations of their impact on the scheduling behaviour. We start with the

CFS scheduler as introduced in version 2.6.23.

5.1.1.1 Scheduling Classes

Linux supports different scheduling classes where threads can belong to. These classes are classified

based upon the working environment.

 In a normal desktop/server (non-real time) environment, two classes are used only:

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 19 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

 The “Completely Fair Scheduling (CFS)” Class where the pthread scheduling functions

uses one of those scheduling policies: SCHED_NORMAL, SCHED_BATCH and

SCHED_IDLE. This scheduling class has been completely reworked (by Ingo Molnar upon

ideas of Con Kolivas and others) and merged into the 2.6.23 release of the Linux kernel.

 The “Idle” class which is used only for the idle threads (one for each processor).

 In the real-time environments, one class is used only:

 The Real-Time Scheduling Class: it is the POSIX fixed-priority real time scheduling, for

SCHED_RR/SCHED_FIFO policies with 99 priority levels.

Since version 2.6.23, these classes started to have their own abstract interface with the kernel scheduler,

which makes it easier to adapt scheduling classes in the future.

All these classes are sorted according to their priorities, starting from the highest priority towards the lowest

priority (from RT -> CFS -> IDLE) as shown in the following figure.

In case there are no “ready-to-run” threads in the high priority class, then the lower-priority classes are

asked for the next thread to be scheduled and executed. There is always one “idle” thread in the idle class

(lowest-priority class at the bottom) ready to run if no threads in higher classes can be activated. Due to

this strict sorting, adding more classes will not make much sense. The abstraction of scheduling classes

makes things more loosely coupled with regards of the central scheduler, which is always a good thing.

Due to the strict prioritization of these classes, adding extra classes is not that useful. However, the loosely

coupling makes it easy to try-out new schedulers and tests them without the need to rewrite a lot of parts in

the kernel. This loosely coupling is used in the academic world to experiment with different type of

schedulers.

The kernel will use this interface to the schedule class to ask for the next thread to run from this class. How

the class handles internal prioritizations is hidden from the central scheduler. This is a clean way to split

responsibilities.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 20 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

5.1.1.2 CFS threads (SCHED_OTHER or now called SCHED_NORMAL)

We will start our review with normal user threads (scheduler class SCHED_NORMAL), which has

been completely reworked since Linux kernel version 2.6.23. For simplicity, we will start with a single

processor system (thus no SMP support). In this simplified case, the scheduler has only to decide if a

thread should run or not.

CFS wants to be fair in scheduling threads. In an ideal “fair” world, each running thread would receive

exactly the same amount of CPU cycles. Ingo calls this a “virtual runtime”. For instance, if there are 100

runnable threads in the system, you would receive a virtual part of 1% from the CPU time. Depending on

how much you have already used of your virtual part, the threads are ordered in a balanced tree (rbtree),

thus causing an O (Log (n)) lookup delay for thread switching.

The ready thread, which has used the smallest portion of the CPU time allocated to it, will have the highest

priority in this tree and thus become the next scheduled thread. This pushes I/O bound threads in front (as

these are not CPU intensive and thus use only a smaller part of their virtual runtime) and as such improves

the I/O bandwidth.

The problem is however what “fair” means. In the kernel version 2.6.23, fairness was done between all

threads in the system. In this case a user running 100 threads would receive ten times more CPU power

than a user running only 10 threads… So this was not fair at the user level! Therefore, the 2.6.24 kernel

version adapted this behaviour to a new “fairness” approach composed of 2 cascading layers: an upper

layer between the users themselves (but other grouping systems may be used as well) and the lower layer

between the threads of each user. In mean time, the fairness between users is dropped, but the generic

grouping of threads can still be done. Remark that such grouping is not something to be setup easily!

But it is still possible to prioritize threads in the CFS scheduling system (make them less fair!). This is not

done by using special strict “priority” as the priority is used only to indicate how much virtual CPU time a

thread may consume while competed with other threads. For this the “nice” call is used to change the

amount of virtual runtime of any thread. The “nice” values range between -20 and 19, where a high “nice”

value means less CPU resources usage (thus a smaller part of the CPU: +19 means about 1.5% CPU

power). Indeed being “nice” means that you give others something…

Remark as well that there are different configurable scheduling parameters which affect the

latency/throughput trade-off. Those parameters can be adapted by using the sysctl interface. But of course,

if you really need low latency, it is better to use RT threads. This will be discussed in the next section.

5.1.1.3 RT Threads

As we are looking to the latency figures in our tests, we are not interested in “fair” scheduling. Our

aim is to have short latencies when needed. Achieving such aim is done via the usage of SCHED_RR or

SCHED_FIFO scheduling policies. Both policies activate the RT scheduler, which has a strict higher priority

than the fair scheduler as described above.

Moreover, the priorities in real-time threads are handled in a strict way: if there is a high priority thread

ready to run, and the CPU is currently running a thread of lower priority than the ready thread, then the

running lower priority thread will be pre-empted. Other commercial RTOS have exactly the same

behaviour. Linux foresees 100 priorities in the Real-Time scheduling class, which is for some extent a low

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 21 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

range compared to other RTOS (most use 256 priorities), but it is adequate for most projects (having less

than 100 threads running in the real-time class).

The difference between SCHED_RR and SCHED_FIFO is the scheduling behaviour for threads having the

same priority. In the FIFO case, each thread will run until it completes (e.g. until it blocks), while in the

Round Robin (RR) case, the thread will use the CPU for a specific amount of time and then will be put on

the back of the queue after this time slice is passed. In both cases, threads going from the blocked to the

ready state are put on the tail of the ready queue for this priority, although there are some small differences

in behaviour:

Indeed we noticed during our tests some specific behaviour differences between the scheduling classes

SCHED_RR and SCHED_FIFO:

 Creating a new thread in the SCHED_RR case puts it in FRONT of the “ready-to-run”

queue of its priority.

 Creating a new thread in the SCHED_FIFO case puts it in the BACK of the “ready-to-run”

queue of its priority.

Similar behaviour was noticed when priorities are changed, lowering the priority while it is the only thread in

the current priority level:

 In case of SCHED_RR, lowering the priority to the next lower queue with ready-to-run

threads will put the thread in front of the FIFO. If it was the only ready thread in the queue it

left, it will keep running.

 In case of SCHED_FIFO it will stop running and be put on the back of the FIFO.

Remark that the SCHED_RR behaviour is similar to the thread behaviour in Windows CE, while the FIFO

case matches the behaviour of most other RTOS.

A good article on how the internals are designed, can be found in the “Linux Journal, issue august 2009:

Real-Time kernel scheduler” written by Ankita Garg.

In this article some “SMP” features are explained. The scheduler will always follow these strict rules, even if

therefore a thread has to migrate to another CPU (run queue). The way to reduce the overhead for this is

done by using only a selective number of CPUs for scheduling real-time threads (the root domain concept).

In that way the number of cross CPU actions/locking can be decreased. A number of CPUs can be put in

one “root domain”, for which all threads for a process (or a group of processes) will only be scheduled on

these CPUs.

As long you divide your CPUs in a way that the root domains do not overlap (e.g. a CPU is not used more

than in one root domain) then there is no need to use locks between these domains. This speeds up thread

switch latency (even if the switch does not need a thread migration, locking has impact on thread switch

latency).

The threads themselves can also be bound to a specific CPU by using an affinity mask, but this avoids

thread migration only. The lock between multiple CPUs will still be needed (as there can be threads not

setting the affinity mask). By using one CPU only in the root domain, there is no need for inter-CPU locks.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 22 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

5.1.1.4 RT scheduling in practice…

All above is theory… Once we are taking a closer look to the kernel source (and documentation), it

seems that some mechanisms are built-in to prevent starvation of normal threads from real-time threads!

 This is really bad! If someone writes a real-time thread which has an endless loop, the system should

end up in starvation (e.g. any thread of lower priority will NEVER have the CPU, at least on a single CPU

system)! This is wanted and REQUIRED behaviour for a system with real-time capabilities! Anything to

avoid this is really wrong. It shows that some designers do not understand what real-time means!

Luckily this “bad feature” can be disabled (take care: it isn’t by default), by modifying a parameter in the

/proc/sys/kernel space. You should set the sched_rt_runtime_us to -1 for disabling this feature. By

default, each second, a time slice of 50 ms is reserved for non-real-time threads, which is surely enough to

completely screw your real-time behaviour!

This is shown in the diagrams below. In this test, we are going to measure the time required by a real-time

priority thread that performs a loop calculation. At some moments, the Linux scheduler timer tick will occur

and delay the activity. That’s why you see the two lines: the bottom line shows the duration of the

calculation loop if no scheduler timer interrupt occurred while the upper line shows if a timer interrupt

occurred during the test loop. This test is used to measure the timer tick interrupt handling duration.

Besides this high priority real-time thread we have one user thread running a dummy loop running at

normal priority using the SCHED_OTHER class.

The diagram below is the result if starvation protection is disabled: clearly this behaves as it should… the

user thread running at normal priority never activates (thus never delays the real-time thread).

The diagram below shows the result if the starvation protection feature is enabled (e.g. default behaviour):

each second, the normal priority thread activates and just takes 50ms of the real-time thread! You can’t

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 23 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

even see anymore the two lines as they are just zero compared with the huge 50ms delay! This is really

bad RT behaviour.

Recently there has been some developers’ activity to have group scheduling for real-time threads. This

permits to divide the amount of CPU power between real-time groups. Again this is very dangerous

approach: what if a thread of high deadline (priority) is located in a group, but the scheduler decided to

schedule the other group threads? Clearly this will produce an unpredictable behaviour that we all aim to

avoid at all cost (at least in real-time systems).

The approach used here is to give some pseudo real-time characteristics for different users (or even virtual

machines). But then it is difficult to talk about “real-time” performance. It is probably better to talk about

threads having “improved latency” compared with fair threads.

In our tests all these features are disabled (either by configuration at runtime, or by kernel configuration at

build time), so we measure in the best case scenario (for RT of course).

All the above shows you that the scheduler is constantly evolving and changing. As a consequence,

upgrading to a new kernel can be a risky business! Also changing the kernel build configuration can

seriously impact the behaviour.

Below is an overview of the Linux tasking model:

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 24 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

OS under evaluation

Supported memory models Full virtual memory

Thread/process priority levels 100 real-time priority levels

Max. number of processes Depending on available memory

Max. number of threads Depending on available memory

Scheduling policies CFS time slicing, for non-real-time threads (SCHED_NORMAL)

Prioritized FIFO for real-time threads (SCHED_FIFO)

Round-robin scheduling for real-time threads (SCHED_RR)

Number of documented

thread states

4: "running", "running-mutex", "sleeping", "disk sleep"

There are also different stopped/exit states.

5.1.2 Memory Management

Memory management in Linux is similar to most general operating systems. It has a protected

kernel space (running in supervisor mode) which can only be accessed by system calls (using traps).

Further, the different user processes are protected from each other by using memory protection between

them.

Linux achieves such memory protection via the usage of the MMU (Memory Management Unit) concept. In

fact, Linux cannot run without this feature (there exists uClinux for this, but this version deviates quite a lot

from standard Linux).

In Linux, the virtual memory paging system mostly uses page sizes of 4KB, although others are possible

as well (depending on CPU architecture). There is a system interface present for using “huge pages”,

which are 2MB in size on Linux x86, and as such this limits the number of TLB exceptions and page faults

to handle. Furthermore these “huge pages” cannot be swapped out, making the behaviour predictable. The

downside of this is that these “huge pages” can be allocated only in an early phase of system initialisation

(e.g. when the physical memory is not yet fragmented).

Having virtual memory that can be swapped away to some slow storage medium is of course a bad idea for

keeping real-time deadlines. We will discuss some memory management specifics and the impact on real-

time behaviour further in this document.

OS under evaluation

MMU support Yes, obligatory

Physical page size 4KB typically (but can be configured depending of architecture)

Swapping/Demand Paging Yes, but can be disabled, but not completely for read-only sections.

Virtual memory Yes

Memory protection models Kernel / user and inter-process protection

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 25 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

5.1.2.1 Copy-On-Write

Normally, Linux never reserves physical memory when virtual memory is requested. Instead, upon

access of some virtual page which is not yet present in physical memory, a page-fault will occur. It is at that

particular moment the memory manager in the kernel will try to allocate a physical page and map it in the

virtual memory page.

For instance, when you load an executable, the initial zeroed data will be located in a virtual memory

region, for which all virtual pages are mapped (read-only) to the zero page of the kernel (a physical page

containing only zeros). All the reads will return zero and will not cause a page fault. The first write however

will cause a page fault (as the zero page is read-only) and at that moment a new physical page is allocated,

cleared with zeros and mapped to the virtual memory page causing the fault.

The same is true for allocation routines like malloc. The malloc routine will be handled in the libraries (in

user space) if possible. If extra memory is needed, it will be requested from the kernel using the mmap (or

brk) system calls. Again the kernel will only return virtual memory, not physical memory! This also means

that you can allocate much more virtual memory than there is physical memory present in the system. We

gave once a small demo to a customer to prove this point. It was done on some embedded platform

(having 64MB ram), where it was possible to allocate 3.5GB (over multiple processes) of virtual memory

using malloc! Yet the system did not have any swap!

Of course, once you write to virtual memory which is not yet mapped to a writable physical page, an out-of-

memory condition could happen (in which case some random process can be killed… or for root processes

it can even lead to a system lock on some kernel versions).

There are ways to try to prevent this by setting some over commit settings in the /proc/sys/vm/ directory.

However, none of these ways can prevent such out-of-memory condition in all cases, but at least they can

lower the occurrence probability of such conditions.

A similar problem occurs for the thread stack. While the stack is growing, page faults can occur which will

allocate physical memory. Luckily you can set the maximum available stack upon thread creation.

A typical use case of such sparse allocated memory is in large arrays used in mathematical calculations.

Typically in such arrays, only the diagonal contains “non-zero” values. So you can do the calculations while

there is no need to allocate all physical memory for the arrays (the zero values are just read-only mappings

of the zero page).

It is clear that such way of working, although efficient for desktops and servers, cannot be used for real-

time systems. Page faults should not happen during a critical low latency path!

Therefore the mlockall () system call exists. This call obliges the kernel to directly allocate the physical

pages for any virtual memory allocation (which is active and/or will become active in the future). Using

mlockall (what we do in our tests) at the beginning largely solves this problem. As an alternative,

allocating and accessing all required memory by writing at least one byte on each page can be used to

allocate the physical memory.

In older kernels we know that the stack allocation could still be a problem, but in the tested kernel, the

physical memory allocation for the virtual stack was done upon thread creation (if mlockall was set,

otherwise the copy-on-write is used). This is very good indeed! However be aware that you should explicitly

set the stack size for each thread you create. Linux uses by default (depending of architecture) a 2MB

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 26 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

stack. In low memory platforms, you will encounter problems if you create a couple of threads. In our test

we configured the threads with 4 pages of stack.

5.1.2.2 Swapping pages

The page faults caused by not yet allocated physical memory is not the only case; page faults can

also happen by pages which are moved (swapped) into memory from some (slow speed) storage.

Retrieving these pages is even slower than allocating physical pages!

Luckily, you can configure the kernel in order not to use this swap support feature, or you can just do not

reserve any swap to avoid swapping altogether. Also the mlockall () call will ensure that memory of

your process is not swapped away.

 However, take care! There is one scenario that cannot be prevented which is swapping away the read-

only pages (like executable sections in a program). Indeed, read-only pages were read at some time during

start-up from some storage medium. As such they can be re-read from this medium at any time. Linux is

clever in doing such things, and thus it can drop these physical pages (as they are “backed” on some

storage). This is clever; for instance, most init code will run only once…

However, to assure deadlines, such things should not happen!

There is no way to disable this in the kernel, but there is an easy work around: start your

application/libraries from “tmpfs” (which is a RAM file system layer). Of course the latter has some impact

on memory usage, but it is the only way to avoid dropping read-only pages.

During our tests, the kernel was configured without swap and our process used mlockall () at start-up.

Further our application was statically linked with the libraries and started from a RAM file system (thus first

copied to tmpfs).

5.1.2.3 Memory pools and heap

In user space, memory allocation is done using the standard C library calls “malloc” which are

provided for free by the glibc library. There is no support for fixed block size memory pools or anything

alike (something typically used in real-time systems to provide predictable allocation time). So you will need

to add your own layer above the standard library one for adding such support.

As remarked earlier, the virtual memory allocated using “malloc” call function is not necessarily to be

physically available by default, until your first write to a page of it. Thus, for real-time systems, it is better

that you set the mlockall () flag for current and future allocations at application start-up!

There are some tuning parameters in “glibc” to adapt the behaviour of the allocation routines. For instance

you can configure the quantity of free memory that should be available before returning it to the system.

You can set also from which allocation size the directly mapped memory (multiple of page size) should be

used instead of the common heap pool.

The advantage of using directly mapped memory is that no fragmentation can occur (the block can be freed

at once, releasing all pages to the system). The disadvantage is of course that you will over-allocate (as

you need always to allocate a multiple of the page size).

When you plan to write device drivers (modules), then of course the user space allocation routines cannot

be used. The kernel uses its own specific memory manager. Two cases are possible:

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 27 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

 The required memory block is large (e.g. “pages”) and there is no requirement that the

physical pages are continuous, then a call with similar behaviour as malloc can be used:

vmalloc (). This call will allocate the virtual memory you need (the same rules apply as

malloc: e.g. the physical pages are not necessarily present). It is clear that due to the nature

of paged virtual memory, this cannot be used by interrupt handlers.

 The required block size is small, or you need continuous memory that needs to be always

available (hardware access, interrupt handlers), then fixed block size memory pools are used.

This is called the “slab”.

As vmalloc behaves similarly as malloc (although handled in kernel space), we will only discuss more in

detail the slab allocator.

As mentioned before, the slab allocator uses fixed memory block pools. You can create a specific pool

yourself, so it may be used for any block size. Further if you use kmalloc () to allocate memory, it will

allocate memory from binary sized pools (8, 16, 32 …). You can use the command “cat /proc/slabinfo” to

see more information on the slab usage (if the kernel is configured to provide you these statistics).

The slab uses directly the mapped memory (e.g. how the kernel accesses the physical memory), therefore

it is not page-able. Further the allocation routines are fast (if you configured the specific pool yourself and

large enough).

As the slab is not paged, care should be taken with larger memory blocks (e.g. more than a page), as this

may quickly become a problem if the memory gets fragmented (causing an out-of-memory condition in the

kernel). As always, the best is to allocate enough upfront.

Remark that due to the nature of virtual memory and the file system caching used in Linux, it is hard to

answer the typical embedded system question “how much memory there is still free?…”. Using

/proc/meminfo, you can have a view on it. Cached memory (e.g. file system cache) can largely be freed

but never in a complete way. Remark that the read-only execution sections and tmpfs are cached as well

(in fact tmpfs is just cache without a physical storage below). If the execution sections are removed from

the cache, it would have a serious performance impact (e.g. they have to be paged in again when you use

them). If you only check the “free” memory part, then you underestimate the free memory as a lot of cached

data can be probably thrown away without any impact (files you accessed once some time ago).

As a consequence, there is still no easy answer to the raised question “how much memory there is free?” A

useful approach is to have a memory allocation application (just malloc and touch pages) and you try it

out on your system until you start to see performance degradation or out-of-memory conditions.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 28 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

5.1.3 Interrupt Handling

In the kernel, interrupts are handled in two layers:

 The direct interrupt handler (e.g. where the processor is in the exception state, which

started execution at some interrupt vector). This is also called first level interrupt handler

 The second level interrupt handler (which runs in the kernel space). This is also called the

bottom half interrupt in Linux terminology (or soft interrupt in more recent kernels).

As in all other operating systems, the first level interrupt handler may never use blocking calls. This of

course limits the available calls that are allowed in this part of the interrupt handler. For instance, paging is

not possible, nor any blocking lock operation (releasing is possible).

It also means that the first level interrupt handlers have always a higher priority than any thread in the

system and as such, badly written first level interrupt handlers (e.g. taking a long processing time) have

negative influence on real-time latency (except of course if the real-time requirement is only located in the

interrupt handler).

5.1.3.1 Softirq

The second level interrupt is recently called the softirq. It is an important one in order to

understand latencies (surely in the non-real-time kernel).

In normal kernels (not using RT preempt patch), just before the first level interrupt handler would return,

there is a check if some more processing should be done (e.g. thus if there is a second level interrupt or

softirq pending). If this is the case, some stack manipulation is done with a direct jump to the softirq thread

context (depending on CPU architecture). Also interrupts are re-enabled. This means that under normal

circumstances, the second level interrupts are handled directly after the first level interrupt. As a result,

such interrupts have a priority between the first level interrupt (as these are enabled again) and normal

threads (as the scheduler is not used for the transition).

Long time ago, only one softirq level existed and all second level interrupt were queued on one FIFO.

Today there are about 10 softirq levels (queues). Each time the softirq handler starts, it starts processing

the highest priority queue.

As one can imagine, a lot of softirq processing will cause starvation for user threads. Alike limiting the RT

thread CPU usage if starvation is coming close, the same feature is implemented in the softirq handler

(yep this is fun, again we reverse priorities!). If the softirq handler finishes handling one pending second

level interrupt, it checks then if there is yet another one pending (which is possible as the interrupts are

enabled). On each loop, a counter is decremented (set at 10 when softirq handler is entered). Once this

counter reaches zero, the softirq thread is activated (called the softirq daemon: softirqd) and an exit

happens. This means that suddenly the second level interrupt handlers are postponed and run in a thread

with the priority just like other user tasks!!!!

Again this has been implemented to avoid “user space” starvation, but this feature has a major impact on

latencies. Surely on embedded devices where the available processor performance is limited compared to

desktop/server systems, this starvation can surely happen. For instance on a Linux based gateway where

a lot of network traffic passes (video, data, VOIP, WIFI, …) this can easily lead to a serious jitter during

heavy load situations. This jitter then impacts VOIP and video quality.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 29 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

Remark that on older kernels, the softirqd had even the lowest priority in the system, making this jitter

even worse!

Clearly, to fulfil some low latency requirements, this is a wrong architecture. However, here the

RT_PREEMPT patch comes to help. So let us take a closer look on how this patch addresses these

issues!

5.1.3.2 Softirq in RT_PREEMPT

Let’s come back to the problems with the normal kernel softirq handling:

 Softirqs are handled directly after the first level interrupt and as a consequence, they have

impact on latency for all threads in the system.

 Under heavy load, the softirqs can be dispatched to a thread, making the latency of the

softirq handling huge.

Using the CONFIG_PREEMPT_SOFTIRQS settings, each softirq queue has its own thread (using the

fixed real-time priority 49).

 Now the behaviour is always the same: softirqs are ALWAYS handled in a thread context and their

priority is NEVER lowered, even not during heavy load making the behaviour predictable.

As softirqs are just threads running at real-time priority, it is possible to have user threads with higher real-

time priority than the softirq threads and as such the latter will never be interrupted by the former, which

helps improving latency if needed.

Further it is possible from user level to adapt the priorities of these threads, which gives you some flexibility

in priority assignments.

Still the first level interrupts have higher priority and may affect latency. Therefore the RT_PREEMPT patch

goes even further: they introduce the “hardirq threads”!

5.1.3.3 Hardirq threads

Depending on your processor/hardware architecture, the RT_PREEMPT patch enables the

concept of first level interrupts handled in the thread context.

What interrupt handler does in case of hardirq threads is:

 Disable the received interrupt (so you need to be able to mask selective interrupts on the

interrupt controller, otherwise this system cannot be implemented)

 Activate the hardirq thread linked with this interrupt.

 In the hardirq thread, call the original first level interrupt handler

By default, the hardirq thread runs at real-time priority 50. Also this priority can be changed, but of course

it should always have a priority which is higher than the second level interrupt handled in the softirq

thread. Otherwise, the programmer paradigm that the interrupt handler cannot be interrupted by threads

(implicit locking) would not be valid any more, leading to unexpected behaviour and crashes!

 So now user threads can have higher priorities than the interrupts (remark that only privileged users

can create threads with real-time priority)!

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 30 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

Of course you have to know what you are doing in this case, but this is what real-time engineers are used

to. The liberty of choosing priority levels for hardirqs, softirqs and real-time user threads will help you a lot

to achieve lower latency requirements.

5.1.3.4 Timer tick interrupt

Not all interrupts can be handled using this hardirq mechanism (e.g. you need the ability to mask

an individual interrupt). Furthermore, some interrupts are so closely coupled with kernel behaviour, which

means that putting such interrupts on a thread level will be a bad approach. Therefore the operating system

timer tick for instance cannot be moved to a hardirq thread.

 Our tests show that the timer tick has a serious overhead compared to other evaluated RTOS which

means a serious increase in the latencies. But for real-time behaviour, predictability is of course more

important than the absolute timings.

5.1.3.5 Conclusion

OS under evaluation

Handling Prioritized and nested

Context System (kernel)

Stack Depends on CPU

Interrupt-to-task

communication

When using hardirqs, thread to thread. Otherwise non-blocking calls.

5.1.4 Synchronisation mechanisms

The typical inter-thread synchronization mechanisms are semaphores and mutexes.

One of the features that was removed from the RT_PREEMPT patch and moved to the Vanilla kernel is

the priority inheritance mechanism of the mutex in order to avoid priority inversions. Any system with real-

time requirements must have such mechanism (or some other means to avoid priority inversions). The

good news is that the priority inheritance mechanism works correctly as detected in our test suite. But you

need to set the priority inheritance feature explicitly because by default it is not. Anyhow, it does not make

sense to use priority inheritance for non-real-time threads, as these have no real “priority” concept. For

real-time threads, all mutexes should be configured using priority inheritance.

Internally in the kernel mutexes are called futexes. This is transparent for the programmer if the glibc

library is used because it abstracts the internal kernel workings with the POSIX mutex behaviour. Remark

that there is no support for this feature when using uClibc as C library (which is used a lot on small

embedded systems).

While mutexes are needed for locking purposes (e.g. protecting simultaneous altering of shared data

between threads), semaphores are meant to be used for signalling purposes or counting (like for a

message queue). Both concepts are completely different: a mutex has an owner (only one thread can have

the lock and only this thread can release the lock) while there is no owner concept involved with

semaphores (as any thread can signal the semaphore). As semaphores do not have the owner concept,

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 31 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

they cannot be used for priority inheritance (the owner inherits the priority of the thread asking the lock…).

Therefore it is a bad idea to use semaphores for protecting shared data between real-time threads!

We know that in most computer science courses it is stated that a mutex is a semaphore with maximum

count 1. However this statement is wrong. Mutexes have a total different behaviour than semaphores; it is

the ownership that makes the difference! Mutexes should be used for locking (critical sections) only, not

for synchronization which is something for semaphores only (like waking up a thread).

5.1.5 Other RT_PREEMPT improvements

As you already noticed during the discussion, a large part of the original developments for the

RT_PREEMPT patch have been moved into the Vanilla kernel (like the priority inheritance, mutex, and the

RT scheduling). However there are still differences: the interrupt handling threads and softirq handling is

one of them, but another important one is the rework of kernel locks.

The original Linux kernel was built around one big kernel lock which means that the kernel was not pre-

emptable. This is of course bad if it comes to small latencies. This has been changed a lot in recent

kernels, where also the kernel is pre-emptable.

However this is going step by step. The first step was to release the big kernel lock during long running

loops only. Today the kernel is largely pre-emptible (if configured as such).

The RT_PREEMPT will adapt further some locking mechanisms in the kernel. For instance, it will transform

spinlocks to pre-emptable semaphore implementations. This means that the busy time of a CPU is

lowered, which can be considered as a nice step forward in order to improve latencies.

 These internal kernel locks use priority inheritance as well, which is an important feature for real-time

behaviour.

All these changes should help you to achieve short latencies.

 However, some drivers are not well written and can lock the scheduling for a long time. So always start

on the safe side and only use drivers that are known to behave well when real-time behaviour is important.

5.1.6 Other Linux issues

Achieving the correct configuration of a kernel with real-time responses is not an easy task

because there are a lot of options to be considered and being careful of enabling some features. For

instance some power management technics in software can be evil for real-time behaviour (depending on

CPU and software techniques used).

It is recommended that you configure your kernel according to the configurations used with the test

machines at http://www.osadl.org (these run continuously and monitor delays).

Of course you can use versions maintained by commercial vendors as well, as they will have probably

better knowledge of the pitfalls creating longer latencies. But of course their support is not for free.

Linux has not been made from the ground up to be real-time (like dedicated RTOS). Instead the known

real-time issues should be solved one-by-one. But by doing so, it is difficult to prove that the chosen

configuration will meet the real-time requirements: e.g. it is difficult to prove that all bad settings as

http://www.osadl.org/

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 32 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

mentioned above are removed. For traditional RTOS, real-time aspects are incorporated from inception!

This is the main difference between Linux and traditional RTOSes.

5.2 API richness

Most RT POSIX calls are in.

There is some lack of typical APIs as used in real-time systems: no fixed block size partitions, no event

flags, no message queues…

Of course, these lacking features can be easily built on top of the available API. Probably you can even find

open source projects which created such libraries for you.

IMPORTANT NOTICE: the purpose of the tables below is only to make an inventory of the kernel/library

related APIs. They make an inventory of basic real-time objects and features present in the POSIX and OS

proprietary interfaces.

While interpreting these results, the reader should keep in mind that these tables cover a strictly

defined set of system calls only. As it is very hard to compare the different API’s from the different

operating systems, no points are given for this section. The reader should use this section to check

if the API calls he needs for his application are available or not.

In general, the more system calls available, the easier it is for the programmer to directly use a call he

needs in the framework of his application. Of course, one can always write a proprietary library to extend

the available system calls or use an open source library doing the same.

Sophisticated calls implemented in the OS will also seriously reduce the application code length and one

might expect that the code implemented in the OS is better debugged and tested (by a lot of users) than

code implemented in an application (or proprietary library).

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 33 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

5.2.1 Task Management

Thread management YES

Get stack size


Set stack size


Get stack address


Set stack address


Get thread state -

Set thread state -

Get TCB -

Set TCB -

Get priority


Set priority


Get thread ID


Thread state change handler -

Get current stack pointer -

Set thread CPU usage -

Set scheduling mechanism


Lock thread in memory


1

Disable scheduling -

1
 For all threads in the process (mlockall)

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 34 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

5.2.2 Clock and Timer

Clock YES

Get time of day


Set time of day


Get resolution


Set resolution -

Adjust time


Read counter register -

Automatically adjust time -

Interval timer YES

Timer expires on an absolute date


Timer expires on a relative date


Timer expires cyclical


Get remaining time


Get number of overruns


Connect user routine


5.2.3 Memory Management

Fixed block size partition NO

Set partition size -

Get partition size -

Set memory block size -

Get memory block size -

Specify partition location -

Get memory block – blocking -

Get memory block - non blocking -

Get memory block - with timeout -

Release memory block -

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 35 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

Fixed block size partition NO

Extend partition -

Get number of free memory blocks -

Lock/unlock partition in memory -

Non-fixed block size pool NO

Set pool size -

Get pool size -

Make new pool -

Get memory block size -

Get memory block – blocking -

Get memory block - non blocking -

Get memory block - with timeout -

Release memory block -

Extend pool -

Extend block -

Get remaining free bytes -

Lock/unlock pool in memory -

Lock/unlock block in memory -

5.2.4 Interrupt Handling (in kernel)

Interrupt handling YES

Attach interrupt handler


Detach interrupt handler


Wait for interrupt – blocking


Wait for interrupt - with timeout


Raise interrupt


Disable/Enable hardware interrupts -

Mask/Unmask a hardware interrupt


Interrupt sharing


©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 36 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

5.2.5 Synchronization and Exclusion Objects

Counting semaphore YES

Get maximum count -

Set maximum count -

Set initial value


Share between processes


2

Wait - blocking


Wait - non blocking


Wait - with timeout


Post


Post – Broadcast -

Get status (value)


Binary semaphore NO

Set initial value -

Share between processes -

Wait - blocking -

Wait - non blocking -

Wait - with timeout -

Post -

Get status -

Mutex YES

Set initial value -

Share between processes -

Priority inversion avoidance mechanism


Recursive getting


3

Thread deletion safety -

2
 Using a named semaphore

3
 Depend on your initialization of the mutex

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 37 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

Mutex YES

Wait – blocking


Wait - non blocking


Wait - with timeout


Release


Get status -

Get owner's thread ID -

Get blocked thread ID -

Conditional variable YES
4

Pend non-blocking -

Pend with timeout


Pend in FIFO / priority order


Broadcast


Priority inversion -

Event flags NO

Set one at a time -

Set multiple -

Pend on one -

Pend on multiple -

Pend with OR conditions -

Pend with AND conditions -

Pend with AND and OR conditions -

Pend with timeout -

POSIX signals YES

Install signal handler


Detach signal handler


Mask/unmask signals


4
 Using pthread lib

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 38 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

POSIX signals YES

Identify sender


Set destination ID


Set signal ID


Get signal ID


Signal thread


Queued signals


5.2.6 Communication and Message Passing Objects

Queue NO

Set maximum size of message -

Get maximum size of message -

Set size of queue -

Get size of queue -

Get number of messages in queue -

Share between processes -

Receive – blocking -

Receive – non blocking -

Receive – with timeout -

Send - with ACK -

Send - with priority -

Send – OOB (out of band) -

Send - with timeout -

Send – broadcast -

Timestamp -

Notify -

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 39 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

Mailbox NO

Set maximum message size -

Get maximum message size -

Share between processes -

Send - with ACK -

Send - with timeout -

Send – broadcast -

Receive – blocking -

Receive – non blocking -

Receive – with timeout -

Get status -

5.3 Development methodology

Linux development is preferred to be done on Linux hosts although it is not required that the host

and target have the same CPU type or family. Using cross-compilation tool chains will solve that problem.

A major problem in Linux is that it is not a complete system; there is the kernel, the libraries, and the

applications (like shells) in which the user should combine them all in a root file system. Compare this with

FreeBSD for instance, which is delivered as a complete system!

Therefore creating an embedded target from scratch can be a daunting task! But for an x86 platform, it will

not be probably that complicated. For other platforms, creating the cross GNU tool chain will take time.

Sure you can use buildroot as a quick way to do this, but then this uses the uClibc library which does not

have NPTL support yet! But even by using buildroot, it can take a lot of work and time to get something up

and running.

Once everything is in its place, then there are different debugger tools available for remote debugging

(gdbserver/gdb combo).

Concerning kernel debugging, debugging of kernel code with a remote host was possible (using KGDB)

only since kernel version 2.6.26. Recently (2.6.36) using KDB is possible from an X environment. KDB is

however not a source aware debugger. So things start to improve, but only recently.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 40 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

5.4 Documentation

OS Documentation 0

10 4

Linux documentation is typical for open source projects: first of all you have the code as

documentation… Luckily there are a lot of other sources of documentation as well. You have the

Documentation directory in the kernel source tree. You have the kernel.org website, where also the latest

man pages can be found.

So there is a lot of documentation available, but not in one nice package. It is scattered around on the

internet. So it will take some time for a newbie to find his way in this. Surely once you need cross

toolchains, real-time behaviour and so one, it is even harder to find the correct documentation.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 41 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

5.5 OS Configuration

OS Configuration 0

10 6

The basic kernel configuration tool (make menuconfig) is, once you know and understand it, easy

to use and contains basic documentation on the features.

The number of configurable items is huge: kernel (build and runtime) libraries, setup of root system and so

on. Using wrong combinations can make your system fail to boot, but much worse it can lead to system

instabilities.

It will take some time before you have enough experience to setup everything correctly.

Using the standard mechanisms to configure and setup everything will put you against a steep wall

if you are a newbie. Once you have experience it becomes more trivial.

The Kconfig system used to configure the kernel is well structured and contains also help information.

Once you know how the “make menuconfig” system works and how configurations are stored, it is not so

difficult to change the kernel build configuration.

However, the number of optional configurations of your kernel is huge. So setting up a configuration can

take a long time. Luckily there are defaults present for most common platforms.

Selecting the different required device support is also daunting because of the overwhelming number of

modules available. Almost for any old hardware, you will find a driver. The only problem that could happen

is with the newest parts (hardware devices) because it could take some time before the support for such

devices is made available in the kernel.

Besides the kernel configuration at build time, there are different settings that may be changed at runtime

(using the /proc/ or /sys file systems). Again you will need to know what you are doing. Surely if you have

specific requirements (like for instance real-time behaviour), it is important that these are set correctly.

Remember, the default settings are not usable for real-time systems.

You will need to have at least an initial root file system to boot, and all the modules that are required to

mount your root file system should be built into the kernel.

Finally, you need also to set-up a root file system for the different services and applications that need to be

configured, for instance the network settings.

Be sure that building a system from scratch will take a lot of time. However, most board vendors already

created ports for their boards, which can fasten the integration work.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 42 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

5.6 Installation and BSP

Installation and BSP 0

10 4

Besides configuring the kernel, a lot more is required to get your platform up and running.

Starting from scratch: you need to build the cross toolchain and setup a workable root file system. You

need a lot of in-depth knowledge before this is feasible to do. So a newbie will have to tackle a steep wall

before succeeding.

Luckily, most board vendors will deliver their board with the needed environment and tool chains, which

makes it easier to start.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 43 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

5.7 Internet Support

Internet support 0

10

No problems here, whatever you want should be possible...

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 44 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

5.8 Development tools

Development tools 0

10 6

Linux (the kernel) on its own does not have graphical tools.

Hackers will typically use text based tools like vim, ctags, gdb, git. For open source IDEs you will need to

take a look to Eclipse.

There are a lot of different tools available (for instance Emacs to name one), but these are not all

integrated.

As there are so many open source projects out there, you can find for almost anything a solution. For an

integrated IDE only Eclipse is a candidate. For most others multiple alternatives are possible.

 Present

(Yes/No)

Integrated

in IDE

(Eclipse)

Standalone Command

based

GUI

based

Editor

Color highlight Yes    

Integrated help Yes  

Automatic code layout Yes  

Compiler

 C Yes    

C++ Yes    

Java Yes    

Ada Yes

Assembler Yes    

Linker    

Incremental Yes    

Symbol table generation Yes    

Development tools

Profiler Yes    

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 45 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

 Present

(Yes/No)

Integrated

in IDE

(Eclipse)

Standalone Command

based

GUI

based

Project management No

Source code control Yes    

Revision control Yes    

Debugger

Symbolic debugger Yes    

Thread sensitive

debugging

Yes    

Mixed source and

disassembly

Yes    

Variable inspect Yes    

Structure inspect Yes    

Memory inspect Yes    

Register inspect Yes    

Target connection

JTAG No

BDM No

Serial (via ROM-Monitor

or app?)

Yes    

Network (via ROM-

Monitor or app?)

Yes    

System analysis tool

Tracing Yes    

Thread information Yes    

Interrupt information Yes    

Loader (for instance uboot)

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.
A

ll
ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-rt30 Page 46 of 46

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-LNX-107 Issue: Draft 1.07 Date: May 30, 2011

 Present

(Yes/No)

Integrated

in IDE

(Eclipse)

Standalone Command

based

GUI

based

TFTP boot loader Yes    

Serial boot loader Yes    

Load separate modules No

Paragraphs may be started with a “smiley” depending on how the writer interprets the paragraph:

 This is something I like…

 This is some aspect that I don’t like at all…

 This is clearly a major problem (and which invalidates the “RT-VALIDATED” logo)

 This is clearly a major problem (and which causes the “DID NOT QUALIFY” logo)

