

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 1 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

QNX NEUTRINO 6.5

© Copyright Dedicated Systems Experts NV. All rights reserved, no part of the

contents of this document may be reproduced or transmitted in any form or by any

means without the written permission of Dedicated Systems Experts NV,

Diepenbeemd 5, B-1650 Beersel, Belgium.

Authors: Luc Perneel (1, 2), Hasan Fayyad-Kazan (2) and Martin Timmerman (1, 2, 3)

1: Dedicated Systems Experts, 2: VUB-Brussels, 3: RMA-Brussels

Disclaimer

Although all care has been taken to obtain correct information and accurate test

results, Dedicated Systems Experts, VUB-Brussels, RMA-Brussels and the authors

cannot be liable for any incidental or consequential damages (including damages

for loss of business, profits or the like) arising out of the use of the information

provided in this report, even if these organisations and authors have been advised

of the possibility of such damages.

http://www.dedicated-systems.com

E-mail: info@dedicated-systems.com

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 2 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

EVALUATION REPORT LICENSE

This is a legal agreement between you (the downloader of this document) and/or your company and the
company DEDICATED SYSTEMS EXPERTS NV, Diepenbeemd 5, B-1650 Beersel, Belgium.
It is not possible to download this document without registering and accepting this agreement on-line.

1. GRANT. Subject to the provisions contained herein, Dedicated Systems Experts hereby grants you a non-

exclusive license to use its accompanying proprietary evaluation report for projects where you or your company
are involved as major contractor or subcontractor. You are not entitled to support or telephone assistance in
connection with this license.

2. PRODUCT. Dedicated Systems Experts shall furnish the evaluation report to you electronically via Internet. This

license does not grant you any right to any enhancement or update to the document.

3. TITLE. Title, ownership rights, and intellectual property rights in and to the document shall remain in Dedicated

Systems Experts and/or its suppliers or evaluated product manufacturers. The copyright laws of Belgium and all
international copyright treaties protect the documents.

4. CONTENT. Title, ownership rights, and an intellectual property right in and to the content accessed through the

document is the property of the applicable content owner and may be protected by applicable copyright or other
law. This License gives you no rights to such content.

5. YOU CANNOT:

– You cannot, make (or allow anyone else make) copies, whether digital, printed, photographic or others, except
for backup reasons. The number of copies should be limited to 2. The copies should be exact replicates of the
original (in paper or electronic format) with all copyright notices and logos.

– You cannot, place (or allow anyone else place) the evaluation report on an electronic board or other form of on
line service without authorisation.

6. INDEMNIFICATION. You agree to indemnify and hold harmless Dedicated Systems Experts against any damages

or liability of any kind arising from any use of this product other than the permitted uses specified in this
agreement.

7. DISCLAIMER OF WARRANTY. All documents published by Dedicated Systems Experts on the World Wide Web

Server or by any other means are provided "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. This disclaimer of
warranty constitutes an essential part of the agreement.

8. LIMITATION OF LIABILITY. Neither Dedicated Systems Experts nor any of its directors, employees, partners or

agents shall, under any circumstances, be liable to any person for any special, incidental, indirect or
consequential damages, including, without limitation, damages resulting from use of OR RELIANCE ON the
INFORMATION presented, loss of profits or revenues or costs of replacement goods, even if informed in advance
of the possibility of such damages.

9. ACCURACY OF INFORMATION. Every effort has been made to ensure the accuracy of the information presented

herein. However Dedicated Systems Experts assumes no responsibility for the accuracy of the information.
Product information is subject to change without notice. Changes, if any, will be incorporated in new editions of
these publications. Dedicated Systems Experts may make improvements and/or changes in the products and/or
the programs described in these publications at any time without notice. Mention of non-Dedicated Systems
Experts products or services is for information purposes only and constitutes neither an endorsement nor a
recommendation.

10. JURISDICTION. In case of any problems, the court of BRUSSELS-BELGIUM will have exclusive jurisdiction.

Agreed by downloading the document via the internet.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 3 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

1 Document Intention .. 5

1.1 Purpose and scope .. 5

1.2 Document issue: the 2.9 framework... 5

1.3 Conventions ... 5

1.4 Related documents .. 6

2 Introduction .. 7

2.1 Overview .. 7

2.2 Evaluated (RTOS) product ... 7

2.3 Supported CPU .. 7

3 Evaluation results summary ... 8

3.1 Positive points .. 8

3.2 Negative points ... 8

3.3 Ratings ... 8

4 Technical evaluation .. 9

4.1 OS Architecture .. 9

4.1.1 Task Handling Method .. 12

4.1.2 Memory Architecture .. 16

4.1.3 Interrupt Handling ... 18

4.1.4 System timer ... 19

4.1.5 Synchronisation mechanisms ... 19

4.1.6 Specialities ... 22

4.2 API richness ... 24

4.2.1 Task Management .. 24

4.2.2 Clock and Timer ... 25

4.2.3 Memory Management ... 25

4.2.4 Interrupt Handling ... 27

4.2.5 Synchronization and Exclusion Objects ... 27

4.2.6 Communication and Message Passing Objects ... 29

4.3 Documentation ... 31

4.4 OS Configuration .. 32

4.4.1 OS Boot options ... 32

4.4.2 OS Configuration .. 33

4.4.3 Building your own BSP ... 33

4.5 Internet components .. 34

4.6 Development tools.. 35

4.6.1 Basic Development ... 35

4.6.2 Extra Tools provided ... 38

5 Appendix A: Vendor comments ... 41

6 Appendix B: Acronyms ... 42

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 4 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

DOCUMENT CHANGE LOG

Issue

No.

Revised

Issue Date

Para's / Pages

Affected

Reason

for Change

1.00 25 March 2011 All Initial draft

2.00 11 May 2011 All Some textual improvements, extra sections on debug
facilities after vendor draft revision

3.00 20 May 2011 All Some textual improvements

4.00 27 May 2011 All Some textual improvements

4.01 27 May 2011 Final draft

4.10 8 Sept 2011 All Ready-to-go

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 5 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

1 Document Intention

1.1 Purpose and scope

This document presents the qualitative evaluation results of the QNX 6.5 operating system. The

testing results of this operating system employed on various platforms can be found on our website.

(www.dedicated-systems.com)[Doc. 5, 6 & 7].

The layout and the content of this report follow the one depicted in “The evaluation test report definition”

[Doc. 3] and “The OS evaluation template” [Doc. 4]. See section 1.4 of this document for more detailed

references. Therefore these documents have to be seen as an integral part of this report!

Due to the tightly coupling between these documents, the framework version of “The evaluation test report

definition” has to match the framework version of this evaluation report (which is 2.9). More information

about the documents and tests versions together with their corresponding relation can be found in “The

evaluation framework” see [Doc. 1] in section 1.4 of this document.

1.2 Document issue: the 2.9 framework

This document shows the results in the scope of the evaluation framework 2.9.

1.3 Conventions

Throughout this document, we use certain typographical conventions to distinguish technical terms.

Our used conventions are the following:

 Bold Italic for OS Objects

 Bold for Libraries, packets, directories, software, OSs...

 Courier New for system calls (APIs...)

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 6 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

1.4 Related documents

These are documents that are closely related to this document. They can all be downloaded using following

link:

http://www.dedicated-systems.com/encyc/buyersguide/rtos/evaluations

Doc. 1 The evaluation framework
This document presents the evaluation framework. It also indicates which documents are
available, and how their name giving, numbering and versioning are related. This document is
the base document of the evaluation framework.
EVA-2.9-GEN-01 Issue: 1 Date: April 19, 2004

Doc. 2 What is a good RTOS?
This document presents the criteria that Dedicated Systems Experts use to give an operating
system the label “Real-Time”. The evaluation tests are based upon the criteria defined in this
document.
EVA-2.9-GEN-02

Doc. 3 The evaluation test report definition
This document presents the different tests issued in this report together with the flowcharts
and the generic pseudo code for each test. Test labels are all defined in this document.
EVA-2.9-GEN-03 Issue: 1 Date: April 19, 2004

Doc. 4 The OS evaluation template
This document presents the layout used for all reports in a certain framework.
EVA-2.9-GEN-04 Issue: 1 Date: April 19, 2004

Doc. 5 QNX 6.5 on an X86 (Atom) platform
This document presents the layout used for all reports in a certain framework.
EVA-2.9-OS-QNX……. Issue: 1 Date: TBD

Doc. 6 QNX 6.5 on an ARM platform.
This document presents the layout used for all reports in a certain framework.
EVA-2.9-OS-QNX….. Issue: 1 Date: TBD

Doc. 7 QNX 6.5 on a PPC platform.
This document presents the layout used for all reports in a certain framework.
EVA-2.9-OS-QNX…… Issue: 1 Date: TBD

http://www.dedicated-systems.com/encyc/buyersguide/rtos/evaluations

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 7 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

2 Introduction

2.1 Overview

QNX Software Systems Ltd was founded in 1980 and has been always focused on delivering

solutions for the embedded systems market.

One of the main differences between QNX and other RTOS is the fact that QNX is built around the POSIX

API standard. This has its advantages as a lot of code for Linux based platforms can be compiled and run

on QNX Neutrino. However, bear in mind that we are discussing a real-time operating system here.

QNX Neutrino is based on true microkernel architecture with message-based inter-process

communication. For instance, drivers are just applications with special privileges, and as such they cannot

crash the kernel. The concept of kernel modules which is the case in Linux is not needed here, which

makes QNX Neutrino a very stable product.

Furthermore, QNX Neutrino was initially built-up as a multi-processor capable operating system (both SMP

and AMP). Nowadays, this is a very important asset in today’s multi- and many-core business.

2.2 Evaluated (RTOS) product

The operating system that we are going to evaluate is the QNX NEUTRINO RTOS v6.5.0, from QNX

Software Systems Ltd.

2.3 Supported CPU

QNX Neutrino v6.5.0 supports the following processors:

- x86

- ARM

- POWER architecture (PowerPC)

- MIPS

- SH-4

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 8 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

3 Evaluation results summary

Following is a summary of the results of evaluating the QNX NEUTRINO RTOS v6.5.0, from QNX

Software Systems Ltd.

3.1 Positive points

- Excellent architecture for a robust and distributed system.

- Very fast and predictable performance.

- Large number of board support packages (BSP) and drivers (the source code for most of them was

available for public) which can be easily downloaded.

- One of the best documented RTOS on the market.

- Efficient and user friendly Integrated Development Environment (IDE)

-

3.2 Negative points

- Not all the source code is available. Customers can apply for source access.

-

3.3 Ratings

For a description of the ratings, see [Doc. 3].

RTOS Architecture 0

10 9

OS Documentation 0

10 9

OS Configuration 0

10 8

Internet Components 0

10 8

Development Tools 0

10 9

BSPs 0

10 8

Support 0

10 8

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 9 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

4 Technical evaluation

This document is limited to the technical evaluation aspects of the product and a qualitative approach

is used. The quantitative test results on a specific platform (X86, Atom, ARM & PPC) can be found in other

reports.

The scores in this document are given in respect of the experiences gathered from evaluating the product

and its comparison with other competing products that we already tested or still under testing. Although all

effort has been done to be as rigorous as possible in the scoring, one should accept that they are partially

based on subjective criteria. Therefore, this part of the evaluation has as sole intention to help the

application designer in his work. Indeed, each (commercial) RTOS is using particular architectural

approaches and working models. This has a serious performance and behaviour consequences influencing

considerably application designs.

4.1 OS Architecture

RTOS Architecture 0

10 9

The QNX NEUTRINO RTOS v6.5 has true client-server architecture, providing full virtual memory

protection. It is a message based OS, and can seamlessly be distributed over multiple nodes. The RTOS

supports SMP, and implements several HA (High Availability) features.

The QNX NEUTRINO RTOS v6.5 has a client-server architecture consisting of a microkernel and

optional cooperating processes. The microkernel implements only the core services like threads,

processes, signals, message passing, synchronization, scheduling and timer services. The microkernel

itself is never scheduled. Its code is executed only as a result of: 1) a kernel call, 2) the occurrence of a

hardware interrupt, 3) or a processor exception. The microkernel is not used for any call that would take a

long execution path (or would be blocking), so that the longest non pre-emptable path in the kernel is

bound.

Any additional functionality is implemented in the cooperative processes, which act as server processes

and respond to the requests of client processes (e.g. an application process). Examples of such server

processes are the file system manager, process manager, device manager, network manager, etc. This is

shown in the figure below.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 10 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

Microkernel architecture

While the kernel runs on the CPU at privilege level, all other processes run at user level. As a

consequence, the managers and device drivers also run at user level. However, these processes can

request the OS to give I/O privileges for their threads in order to access I/O and install interrupt handlers

(which can be done only if the application process runs at root user). Depending on the used CPU type, the

system call for giving I/O privileges for the thread can change the CPU privilege level of the running thread.

Application processes that do not request I/O privilege are always running at user level.

 The fact that device drivers and server processes are not part of the kernel, helps in debugging them

easily (just like any other application) and so the kernel will not crash due to faults in any device driver! This

makes QNX to be a very safe and reliable RTOS.

The QNX NEUTRINO RTOS v6.5 is a message-based operating system. Message passing is the

fundamental means of inter-process communication (IPC) in this RTOS. The message passing service is

based on the client-server model: the client (e.g. an application process) sends a message to a server (e.g.

device manager) who in turn replies with the result. A lot of the QNX NEUTRINO RTOS API calls use the

message passing mechanism. For example, when an application process wants to open a file, the system

call is translated into a message that is sent to the file system manager. The file manager (after accessing

the disk via its device drivers) replies with a file handle.

 This message passing mechanism is network transparent i.e., the system can be seamlessly distributed

over several nodes, without requiring any changes in the application code.

Synchronous IPC mechanism using un-queued messages is the base for system calls throughout QNX.

For this purpose, servers will create “channels” where other threads can send to. The concept is that a

client sends a message to a certain channel, not to a specific thread. Channels use a small integer

identifier (like the FD file descriptors upon open). In this way, they can be directly used for file descriptors

as well.

The channel uses a priority FIFO queue for all pending requests. The priorities are inherited from the client

thread that initiated the call. As such, the server thread will always start first by handling the highest priority

pending request message.

Of course, it is not because the messages are prioritized that priority inversion can’t happen. It is indeed

possible that the server thread happens to runs on a lower priority than the client thread.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 11 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

To deal with this issue, QNX Neutrino puts two mechanisms in place:

- When handling a “received” message whose priority is “lower” than the server priority, then the server

priority will be lowered to the client thread priority. This prevents the lower priority client thread from

indirectly blocking higher priority threads via the server.

- When a server thread is running with a priority which is lower than the “sending” client priority, then the

server thread priority will be increased up to the same priority level as the sending client at the

moment of the send (this means immediately).

 As a result, the relative priorities of the client threads requesting work of the server are preserved, and

the server work will be executed at the appropriate priority. This message-driven priority inheritance avoids

priority-inversion problems.

The use of this message-driven priority model is hidden behind classical procedural API’s and therefore

acts similarly as the concept of calling a procedure within the same thread. It runs automatically at the

same priority as the caller, and does not induce any supplementary delay except if the message is passed

across a LAN, where classical LAN delays will show up.

QNX Neutrino is fully pre-emptable, even during passing messages between processes; it resumes the

message pass from the moment it left off before pre-emption.

QNX uses a software bus model. Software modules can be plugged-in on demand when extra features are

needed. This is illustrated in the figure below.

The software bus concept.

 This client-server architecture has many advantages. Probably, the most important one is robustness.

Every manager and device driver runs in its own virtual memory address space, resulting in a robust and

reliable system. The only exception is the process manager itself as it requires the capability to manage all

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 12 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

processes. In theory, the assumption is that the price to pay is performance: execution of system calls

results in a couple of context switches with an overhead caused by memory protection, which should

theoretically result in somewhat lower performance. However, test results show that this performance

trade-off is very low and even not observable. Client-server architecture makes coding simpler which

should improve development time efficiency.

4.1.1 Task Handling Method

4.1.1.1 Processes and threads

The QNX NEUTRINO RTOS v6.5 uses processes and threads. A process defines the address

space in which threads will run, and will always contain at least one thread. This is the same view as the

definition we adopted throughout all our reports. As a consequence, processes protect its collection of

threads with regards to the other threads in the system.

The scheduler makes all scheduling decisions based on threads without any regards to process

boundaries.

 Compared to our previous report on QNX 6.3, an interesting feature/attribute has been added: the

thread name. This makes it easier when debugging/monitoring your application which in turn augments

project design efficiency.

4.1.1.2 Thread priorities

QNX Neutrino supports 255 thread priorities which should be enough even for complex systems

supporting a Rate Monotonic Scheduling model where it is mandatory to put threads on different priority

levels.

Priorities are numerically ordered: for example, 0 is the lowest priority, and it is reserved for the idle thread.

The 255 user priority levels are subdivided by default into different sections:

- Priority 0: reserved for the idle thread

- Normal priorities 1 – 63: that may be used by any thread

- Privileged priorities 64 - 255: these priorities may only be used by root processes (root as used in

UNIX like operating systems: for processes with user id 0).

Should it be required, the process manager has a start-up parameter which changes the boundary between

normal and privileged processes.

The concept of non-privileged processes (which may not use the full priority range) is useful to allow third-

parties to develop non real-time applications next to a real-time application. The real-time part runs in

privileged mode and the non real-time part does not interrupt high priority threads, as it doesn’t have the

privilege to do so.

4.1.1.3 Scheduling mechanisms

Given that QNX is a real-time operating system, a priority based scheduling approach is used to

schedule threads. For threads belonging to the same priority level, the following different scheduling

options can be specified:

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 13 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

- FIFO: the thread stays at the front of the queue until it voluntary relinquish control (mostly by calling

blocking system calls).

- Round-Robin: same as FIFO, but an extra time-slicing mechanism is used here, which will put the

thread at the end of the queue when the time-slice is passed. (Note that a time-slice is 4 times the

clock period).

- Sporadic scheduling: this is a type of adaptive scheduling where a thread has two priorities. The

thread priority is decreased if it consumes too much CPU during a time-slice. After some time on a

low priority level (replenishment period), the thread can go back to its original priority.

All these parameters are adaptable for each thread.

Remark that FIFO is not always used: a server thread that’s receiving a message will come in the front of

the queue (as it acts on the callers behalf). The latter is necessary to avoid latencies in synchronous calls.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 14 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

4.1.1.4 Process management.

The management of processes and memory in a QNX system is handled by the process manager.

The process manager is a special process, in the sense that the microkernel is included in it and as such

they share the same address space. This is logical construction as both need to have access to all memory

in all processes.

Nevertheless, the process manager is NOT running in privileged mode and still has to perform a privacy

switch when invoking the microkernel! This means that the process manager behaves just like any other

process in the system.

In the “QNX Neutrino RTOS System Architecture” manual, which is a very well written and understandable

document, QNX proposes, for maximum robustness, to avoid using threads when there is no need for them

and instead to use in such cases processes with a shared memory partition between them. It is not that

they are against thread usage, but threads should only be used when they make sense (for example to

introduce concurrency) and processes should be used for decoupling, modularity and protection (loosely

coupling is always good in software systems).

They defend the use of processes through the following arguments:

- The context switch between processes is not much longer than between threads (the difference lays in

the MMU/addressing context).

- If you use shared memory between processes, then you do not have the copy overhead.

- As a plus, you have protection mechanisms in place between the threads (as now they are

processes).

Shared memory is protected from all processes except the ones where it is shared with. So although the

shared memory itself is not (fully) protected (so one process can still corrupt shared memory used by

another process), the local thread data (and thus thread stack) is protected from the other threads (as they

are separate processes).

Of course, the decision about what to put in threads and what in processes is a fundamental design step

which is not to be taken lightly. As usual, neither the solution of using one process full of threads, nor the

solution of using only processes without threads will be optimal… It is however true that a lot of embedded

software engineers do not take processes into account, as historically most RTOS did not have such

protection concept (today this is still true for a lot of RTOS).

 As QNX complies to POSIX, the typical process initiators like exec, fork, spawn and so on are

present, although some have their limits towards compatibility (after all QNX is not Linux). For instance,

the fork calls can only be done from processes containing only one thread.

The executable file format used is ELF. Also, it is possible to execute code sections from ROM/flash in

place (XIP) so that all RAM is available for writable data.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 15 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

Below is a table with an overview of the scheduling characteristics.

OS under evaluation

Supported memory models Processes protected between each other, with multiple threads in one

process.

Thread/process priority levels 256 levels (privileged priority levels included)

Max. number of processes _SC_CHILD_MAX, can be set by the sysconf() call: the number of

processes by userID. The hard limit is 4095.

Max. number of threads The maximum number of threads in a process is limited to 32767.

Scheduling policies Priority based scheduling for threads not belonging to the same priority

level.

Threads on the same priority: FIFO or Round-Robin (thread time-slice

is always 4 OS clock ticks).

Sporadic scheduling is an additional scheduling mechanism that

overlays the standard thread priority scheduling model. A thread can

have two priorities between which it switches dynamically; this is called

sporadic scheduling.

Number of documented

thread states

Ready, Running and Blocked. QNX uses different state names

depending on the reason of the blocking. With these detailed block

states, the total number of documented states is 21.

Number of undocumented

thread states

N.A.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 16 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

4.1.2 Memory Architecture

The memory architecture of QNX Neutrino v6.5 is similar to the classical memory protection

between processes just like in the traditional operating systems such as Solaris, Linux, and Windows.

Each process also has its own private virtual memory space; same addresses are reused in each process.

Depending on the processor used, each user process can have between 2 to 3.5 GB virtual memory

available.

Memory protection cannot be disabled as the memory architecture will depend on an MMU being available.

4.1.2.1 Boot ROM

When code is located on a boot ROM, it can be executed in place without using a RAM copy. Of

course, this has its performance impact and as such it is used today only in rare occasions.

Today, booting will mostly occur by using NOR/NAND flash or block devices (hard disks, SSD).

Remark that even when you are running from a block device, if the same code segment is used in different

processes, then the code needs only be present once in RAM.

4.1.2.2 Paging

QNX uses physical memory paging with 4-KB pages (similar to Linux). The RTOS manages the

page tables from which the most frequently used pages are cached in the TLB of the CPU. Variable size

pages are also supported on hardware where this is available. Variable size pages can improve

performance by generating fewer TLB exceptions. A boot option can be used to turn off variable pages if

desired.

In a context switch between processes, the RTOS manipulates the page tables so that the logical

addresses, which may or may not be the same, point to the new physical addresses in memory. This

operation is extra overhead when compared to inter-thread switching. QNX uses clever page table

arrangements to minimize this overhead.

Although QNX does not support paging memory to disk, pages can still be unlocked in memory. For

instance, QNX uses also an allocation on first write of physical memory (compared with Linux). The

purpose of unlocked memory is to delay acquiring system memory and initializing it until an access to that

area occurs. QNX supports POSIX memory locking so that a process can delay and potentially avoid the

latency of fetching a page of memory. Once memory is acquired and initialized, it is set to locked state.

Locked memory can be shared between processes. Super-locked memory is initialized memory that is

private to a process. If you attempt to write to a locked memory page, then the kernel gets involved and

may setup a private (super-locked) page if this is required. Memory locking can be controlled on start-up

via procnto parameters or programmatically via system calls such as mlock().

We use the procnto –mL option in all our tests so that all memory pages are acquired, initialized,

privatized and super-locked right away. This prevents extra delays when unexpected and thus improves

real-time behaviour.

On requests for larger physical continuous blocks of memory, QNX may invoke defragmentation of physical

pages if needed. This process involves copying and remapping memory with the goal of coalescing free

memory into larger blocks. Since other tasks may be running simultaneously, the defragmentation

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 17 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

algorithm takes into account that memory mappings can change while it is running. The algorithm takes

also into account that certain pages such as those used by the kernel and hardware cannot be moved in

physical memory. Memory defragmentation can be turned off via a procnto option if desired.

4.1.2.3 Heap

The heap is a standard heap system as used in any traditional operating system. A debug version

of the heap library can be used to detect memory leaks and heap corruption issues such as under-runs and

over-runs. The debug version of the heap library is not meant to be used in the final version of the product

as it will influence real time behaviour.

OS under evaluation

MMU support Yes

Physical Page Size 4Kb, but large pages available (if supported by CPU)

Swapping/Demand Paging Not available.

Virtual memory YES (QNX requires a MMU to run)

Memory protection models  Full virtual memory protection. Each process runs in its own virtual

memory space

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 18 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

4.1.3 Interrupt Handling

The microkernel interrupt redirector handles interrupts in their initial stage. This redirector saves the

context of the currently running thread and sets the processor context in a way that the ISR has access to

the code and data that are part of the thread in which the ISR is contained within (i.e., this is the thread that

attached the ISR).

The QNX NEUTRINO RTOS v6.5 supports interrupt sharing. When an interrupt occurs, every interrupt

handler attached to the hardware interrupt is executed in turn. The order of interrupts can be influenced by

the order the interrupt handlers are attached (you can attach new handlers on the front or on the back of

the list).

 The interrupts aren’t disabled during the execution of an interrupt handler, so interrupts can be nested.

Unmasked interrupts can be serviced during the execution of running interrupt handlers.

Interrupt service routines can return NULL (= nothing to activate) or a pointer to an event to the

microkernel. If the event is used, then the thread that attached the ISR can wait for the event to occur.

You can also avoid creating your own interrupt service routine and directly attach an event to an interrupt.

In this case, the kernel automatically does a masking of the interrupt when delivering the event to the

attached thread. After the interrupt-handling thread has dealt with the event, it must unmask the interrupt to

re-enable it. This is a highly secure way of handling interrupts because there is no ISR called from the

kernel.

 The interrupt handling model is made in order to be able to consider a device driver just like any other

user process. It is therefore not linked in the kernel (that’s why we call this a true microkernel architecture).

Device drivers need only enough privileges to access device memory.

ISRs can also easily pass data through application-defined structures to the process that attached it (as the

ISR actually runs in the process space that attached it). Attaching an event to an interrupt avoids writing an

ISR and so there is no need to pass data from the ISR to the event servicing thread.

The use of semaphores in the ISR was intentionally blocked, because it is a less elegant solution for an

RTOS with message based architecture.

OS under evaluation

Handling  Nested and prioritized

Context The ISR runs in the context of the process that attached the interrupt

handler.

Stack The ISR has a special limited stack (normally around 200 bytes)

Interrupt-to-task

communication

An event can be used from within the ISR to signal the Interrupt

Servicing Thread (IST). This event can be used to pass data from the

ISR to the servicing thread as well.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 19 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

4.1.4 System timer

The operating system clock timer (also called clock tick) is by default set on 1ms for processors

running faster than 40MHz.

Nevertheless, it is possible to change this by a system call. Of course, it will be rounded depending on the

hardware limitations for generating the clock interrupt.

All system timers have accuracy which is not better than the clock period, just like for any operating

system.

The system timer can also be speed-up or slowed-down so it is possible to gradually synchronous time

between devices (for instance by using SNTP protocol). This mechanism avoids abrupt time steps during

run-time.

4.1.4.1 Hi resolution timers

QNX supports also hi-resolution timers (performance counters), depending on the hardware being

used. These timers have an increase rate depending on the hardware. If such hardware is not present, the

kernel will emulate one.

It is possible to retrieve the frequency of the hi-resolution timer (as it will depend on your hardware).

Remark that in a SMP system, these CPU timers depend on the CPU that the thread is currently running

on.

4.1.4.2 Time-out timers

QNX Neutrino v6.5 has a special mechanism for timing-out on blocking system calls; the thread

can request the kernel that it wants to time-out with a certain amount of time before performing the blocking

call. This has some advantages, as the kernel itself will start the timer upon the system call. If the thread

would start a timer before calling the blocking system call, then it could be pre-empted before actually

issuing the system call (and thus the timeout could be caused by another high-priority thread).

 This mechanism is pretty unique in the RTOS world and prevents some developer headaches.

4.1.5 Synchronisation mechanisms

QNX is built around a Synchronous Inter-Process Communication messaging system. This is

then also the most used and highly optimized mechanism to communicate between processes. This

system behaves somehow like a library; function calls actually run in another process but the call does not

return until the handling is finished.

Luckily, QNX supports also asynchronous messaging queues based on the POSIX standard. This is more

useful in a loosely coupled designs where the messages are forwarded without acknowledgement (a fire

and forget solution).

4.1.5.1 Protection mechanisms

QNX Neutrino v6.5 provides all protection mechanisms as foreseen by the different POSIX

standards. Some of them are usable between threads only, some also between processes and even

between remote processes (on a network).

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 20 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

These are the common protection mechanisms (see POSIX):

- Mutexes: the same protection mechanism as defined in our evaluation terminology. It is used for

protecting critical sections when manipulating shared data between threads. In QNX, mutex by

default uses priority inheritance to avoid priority inversion. It is possible to disable priority inversion for

a certain mutex, but this should be a very bad idea. If you really believe that for a certain mutex no

priority inheritance is needed, then you probably require a semaphore instead of a mutex.

Mutexes are normally used between threads only. They can be used between processes if the mutex

is located in a memory region shared by the two processes. Indeed, if there is no shared data to

protect (and thus a shared memory region between processes), then there are no critical sections

and thus no need for a mutex.

It is important to remark that on most CPUs the kernel is not involved in the mutex handling until a

mutex call changes the state of the caller or releases a thread. Only processors which do not have

support for atomic instructions require kernel access for each mutex system call.

- Semaphores: They do not use priority inheritance and can be easily used between processes. QNX

also provides named semaphores to be used between network nodes. Semaphores should not be

used to protect shared data (for which mutex are appropriate), but to synchronise threads.

Beside these common protection mechanisms, QNX also provides following POSIX mechanisms:

- Conditional variables: wait within a critical section until something is true.

- Barriers: a synchronization mechanism that lets you "corral" several cooperating threads, forcing

them to wait at a specific point until all have finished before any one thread can continue.

- Sleep-on locks: a special kind of conditional variables.

- Reader/writer locks: these locks are used when the access pattern for a data structure consists of

many threads reading the data, and (at most) one thread writing the data. These locks are more

expensive than mutexes (as they are built upon conditional variables and mutexes).

We refer to the POSIX standard and online QNX documentation for more information about these.

It is important to note that there are a lot of possibilities to choose from if it comes to synchronisation

primitives. However, normally mutexes and semaphores will in most cases do the job.

In scope of the evaluation framework, the priority inheritance mechanism for mutexes is the most important

feature.

4.1.5.2 Interlocked mechanisms

QNX Neutrino supports some atomic system calls for:

- adding a value

- subtracting a value

- clearing bits

- setting bits

- toggling (complementing) bits.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 21 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

These work only locally (upon shared data).

4.1.5.3 Communication mechanisms

Again QNX provides most available Inter-Process Communication mechanisms foreseen in the

different POSIX standards.

4.1.5.3.1 Synchronous message passing

The most important mechanism is the message passing interface as it is used by the different

system calls. This message passing mechanism uses synchronous message-based priority server handling

of messages, making such calls transparent if they were handled in another process or within the same

thread (same priority is used).

This message passing system uses channels to send messages to, so that messages are not directly sent

to threads but to channels.

4.1.5.3.2 Pulses

Pulses are an asynchronous system to pass messages between different processes. However,

they can only be used for small payloads (8-bit pulse code with a 32-bit data argument).

4.1.5.3.3 Events

Pulses, POSIX signals and even interrupts are all based on the QNX internal asynchronous event

handling system.

4.1.5.3.4 POSIX signals

For this we refer to POSIX, most developers will know this mechanism from building UNIX

applications.

Furthermore the signals are defined in three regions:

- Classical POSIX signals (including traditional UNIX signals)

- POSIX real-time signals

- Some special-purpose QNX signals.

4.1.5.3.5 Asynchronous message passing

Besides the synchronous message passing, QNX also supports the POSIX asynchronous message

queues. This is done by an optional resource manager the mqueue.

 There's a fundamental difference between the QNX synchronous messages and POSIX message

queues. Synchronous messages block copy their data directly between the address spaces of the

processes sending the messages while POSIX messages queues, on the other hand, implement a store-

and-forward design in which the sender does not need blocking and may have many outstanding

messages queued. The synchronous messages also inherit the priority from the message sender, which is

not the case for the POSIX message queue.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 22 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

Asynchronous message passing following POSIX use a file like system: a path to open the queue and

read/write to receive and send data on it.

4.1.6 Specialities

Here we list some special features that can be used with QNX.

4.1.6.1 Adaptive partitioning

Adaptive partitioning is an additional scheduling mechanism that overlays the standard thread

priority model. It allows creation of separate partitions to which processes or threads are assigned, and

guarantees that those partitions receive the configured amount of CPU if they need it. Unlike a hard

partitioning system, idle time is not wasted, but is redistributed by the scheduler to the partitions that need

it.

This can be used for instance to tackle denial of service attacks.

The adaptive partitioning mechanism uses a sophisticated micro-billing scheme to track usage against

each partition. It includes features like:

- Dynamic creation of partitions and partition lock-down for configuration security

- Sliding time windows for partition calculation with a user-configurable window size

- Assignment of individual threads to partitions outside of a processes main partition

- Critical threads are allowed to borrow against a partition’s limit to ensure they always execute

- Appropriate client/server billing where server’s time is billed to a client’s request: this is similar like

priority passing when requesting a work item from a server.

- Ability to change application execution partitions at run time without changing source code.

There cannot be put constraints on memory resources.

Adaptive partitioning can be used to assist in integration, by making sure all software contributors are

operating within their given budgets. It can also guarantee that low-level processes are not completely

starved with unfound bugs, unusual circumstances or attack instances. Things like command-line or

debugger access, logging facilities, or administrative controls can be allocated into a small partition to be

certain that they will always run, even when the system is overloaded with high-priority tasks.

Remark however that the designers have to know what they are doing, as wrong partition configuration can

cause deadline misses (by not allowing critical threads to run the time it needs). Such things can be

avoided by a correct set-up.

4.1.6.2 High Availability (HA)

There are also some high availability features. Already, due to the message system and micro

kernel with device drivers and other servers having their protected memory, QNX has a robust design.

The HA feature that can be added is to transparently recover a server (and its listen channel), without any

client noticing this.

In such cases a server failure or reboot can be detected by a HA manager, which restarts the server. The

restarted server can then handle the pending request.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 23 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

 The nice thing about this mechanism is that the client does not need to know that the service has been

restarted nor it has to check if some failures occur as this is done automatically.

4.1.6.3 PPS (Persistent Publish/Subscribe)

This is an extensible service that offers persistence across reboots and is a key mechanism to

enable developers to build loosely connected systems using asynchronous publications and notifications.

4.1.6.4 Transparent Distributed Processing

Another feature is Transparent Distributed Processing using Qnet which extends inter-process

communications transparently over a network of micro-kernels. As such, distributed systems are easier to

build. Further, Qnet can be used to add redundancy by multi-path links.

4.1.6.5 BMP (Bound Multi-core processing)

BMP is an extension on SMP that allows the developer to lock individual threads or processes to a

specific CPU. This capability is useful to support legacy applications that use poor techniques for

synchronizing shared data (typically the use of implicit locking by priority, which is of course of no use on

SMP systems).

This is very similar to setting CPU affinity. However, QNX provides the ability to start an application by

command line on a specific core (at runtime, thus without adapting the source code).Additionally, with

BMP, new threads created by bound threads will inherit the affinity mask of their creator.

4.1.6.6 Instant Device Activation

Instant Devices Activation allows a developer to set up a “mini driver” to respond quickly to external

stimulus when the system boots. A typical scenario involves a device that sends a message within 30

milliseconds after power is turned on. Instant device activation can save on hardware costs by reducing the

need for extra chips and circuitry to handle these scenarios.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 24 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

4.2 API richness

The QNX NEUTRINO RTOS v6.5 provides both a POSIX-compliant and proprietary API. The API

is geared towards message-based systems, which is a natural match for the system architecture. There is

only a lack for fixed block size memory partitions.

IMPORTANT NOTICE: the purpose of the tables below is only to make an inventory of the kernel

related APIs. They make an inventory of basic real-time objects and features present in the POSIX and OS

proprietary interfaces.

While interpreting these results, the reader should keep in mind that these tables cover a strictly

defined set of system calls only. As it is very hard to compare the different API for the different

operating systems, no points are given for this section. The reader should use this section to check

if the API calls he needs for his application are available or not.

In general, the more system calls there are available, the easier it is for the programmer to find the correct

call for his application, without writing a proprietary library with for instance wrapper calls…

4.2.1 Task Management

Thread management YES

Get stack size


Set stack size


Get stack address


Set stack address


Get thread state


Set thread state


Get TCB -

Set TCB -

Get priority


Set priority


Get thread ID


Thread state change handler -

Get current stack pointer


Set thread CPU usage -

Set scheduling mechanism


©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 25 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

Thread management YES

Lock thread in memory


1

Disable scheduling


4.2.2 Clock and Timer

Clock YES

Get time of day


Set time of day


Get resolution


Set resolution


Adjust time


Read counter register


Automatically adjust time


Interval timer YES

Timer expires on an absolute date


Timer expires on a relative date


Timer expires cyclique


Get remaining time


Get number of overruns


Connect user routine


4.2.3 Memory Management

Fixed block size partition NO
2

Set partition size -

Get partition size -

Set memory block size -

1
 Locking in memory is done by mlockall calls on a process basis or on bootup by procnto options.

2
 The heap can be configured with certain fixed block sized bands.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 26 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

Fixed block size partition NO
2

Get memory block size -

Specify partition location -

Get memory block – blocking -

Get memory block - non blocking -

Get memory block - with timeout -

Release memory block -

Extend partition -

Get number of free memory blocks -

Lock/unlock partition in memory -

Non-fixed block size pool YES
3

Set pool size -

Get pool size


Make new pool -

Get memory block size -

Get memory block – blocking


Get memory block - non blocking -

Get memory block - with timeout -

Release memory block


Extend pool -

Extend block


Get remaining free bytes -

Lock/unlock pool in memory


Lock/unlock block in memory


3
 Standard heap (malloc).

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 27 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

4.2.4 Interrupt Handling

Interrupt handling YES

Attach interrupt handler


Detach interrupt handler


Wait for interrupt – blocking


Wait for interrupt - with timeout


Raise interrupt -

Disable/Enable hardware interrupts


Mask/Unmask a hardware interrupt


Interrupt sharing


4.2.5 Synchronization and Exclusion Objects

Counting semaphore YES

Get maximum count -

Set maximum count -

Set initial value


Share between processes


Wait - blocking


Wait - non blocking


Wait - with timeout


Post


Post – Broadcast -

Get status (value)


Binary semaphore NO

Set initial value -

Share between processes -

Wait - blocking -

Wait - non blocking -

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 28 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

Binary semaphore NO

Wait - with timeout -

Post -

Get status -

Mutex YES

Set initial value


Share between processes


4

Priority inversion avoidance mechanism


Recursive getting


Thread deletion safety


5

Wait – blocking


Wait - non blocking


Wait - with timeout


Release


Get status -

Get owner's thread ID -

Get blocked thread ID -

Conditional variable YES

Pend non blocking


Pend with timeout


Pend in fifo / priority order


Broadcast


Event flags NO

Set one at a time -

Set multiple -

Pend on one -

4
 If in shared memory

5
 Can be done by a non-posix mutex wakeup.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 29 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

Event flags NO

Pend on multiple -

Pend with OR conditions -

Pend with AND conditions -

Pend with AND and OR conditions -

Pend with timeout -

POSIX signals YES
6

Install signal handler


Detach signal handler


Mask/unmask signals


Identify sender


Set destination ID


Set signal ID


Get signal ID


Signal thread


Queued signals


4.2.6 Communication and Message Passing Objects

Queue YES

Set maximum size of message


Get maximum size of message


Set size of queue


Get size of queue


Get number of messages in queue


Share between processes


Receive – blocking


Receive – non blocking


6
 On top of these signals, QNX supports all of the enhanced POSIX real-time signals.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 30 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

Queue YES

Receive – with timeout


Send - with ACK


Send - with priority


7

Send – OOB (out of band)


8

Send - with timeout


Send – broadcast -

Timestamp -

Notify -

Mailbox NO
9

Set maximum message size -

Get maximum message size -

Share between processes -

Send - with ACK -

Send - with timeout -

Send – broadcast -

Receive – blocking -

Receive – non blocking -

Receive – with timeout -

Get status -

7
 Queues are always prioritized and FIFO when messages have the same priority.

8
 Indirectly by using priorities

9
 A mailbox is in fact nothing more than a message queue that can store no more than one message. It is included for

the sake of completeness, but most operating systems do not explicitly support it anymore.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 31 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

4.3 Documentation

OS Documentation 0

10 9

It has been always one of the best documented RTOS on the market and still it is.

Just like before, the documentation does a serious job by providing a general overview of the

system and its architecture.

The first task a user should do is to use the Quick start Guide: “10 Steps to Developing a QNX Program”,

which guides him how to setup a QNX PC host/target and to run/debug a simple “hello” application. It is a

very simple document adapting the concept of “do this, click there” which helps the user to get started-up

quickly in developing his applications. Remark that you can run QNX as well in a VMWare virtual machine

which is a very useful step to get things starting up quickly on your machine. It makes the development

procedure easy as well to run your code already on a target, even without any specific hardware available

yet.

For more detailed information about the operating system, we suggest to start by going through the system

architecture section of the documentation.

Everything in the documentation is well written and all special things are highlighted (for instance, that a

certain feature is available since version X). Further, if needed, extra insight is given concerning real-time

behaviour.

QNX Software offers paid enhanced support options for its customers (Standard and Priority support).

The support is handled via a support website where it is easy to track issues and handle them. For

instance, it is possible to attach files and similar issues.

We used the support site a couple of times and it worked well.

There is Foundry27 as well, which is a collaboration instrument for developers working with QNX and open

source related. For instance you will find code and examples how to run QNX as a QEMU host or guest.

The number of projects are however limited.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 32 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

4.4 OS Configuration

OS Configuration 0

10 8

Installation is quick and simple if a BSP is supplied from QNX. Creating and configuring a custom

QNX image is done in the IDE or by text-based build files. However building a new BSP isn’t easy.

Anyhow, all BSPs and drivers are delivered in source code and can be ported to your platform. Only the

kernel and libraries aren’t delivered in source code

4.4.1 OS Boot options

Booting up a target which runs QNX is a process of three steps:

- The Initial Program Loader (IPL), which:

- set up the crucial hardware (for instance DRAM timings)in order for any software to run

- set up a device used to load the OS (and application)

- loads the OS in memory

- Jump to the first address of the loaded OS (which is the start-up program).

- The start-up program, which

- sets the hardware configurations needed by the kernel in predefined structures

- Searches for the different bootable configurations (multiple may be installed!)

- mount the boot file system (mapped into memory, if downloaded OS) and start the kernel

- The kernel then runs the start-up script which is used to load supported devices and start the

applications

For example, IPLs are delivered in source code (e.g. for each supported board), which may be used to

build yours. However, setting up the hardware isn’t easy and has to be documented by the board

manufacture.

The IPL does not need to be the one from QNX! Any piece of code that sets up the hardware and

downloads and can start a binary will be sufficient. For instance, the BIOS on a PC can be used, but also u-

boot or other ROM monitors can be used.

The learning curve for understanding the start-up mechanism is steep, which is the case with all other

RTOSs.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 33 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

4.4.2 OS Configuration

Building a custom target QNX image is done through the “build” files. Modules can be added,

removed and configured by manually editing these text-based files. The documentation contains plenty of

examples about such “build” files.

In addition, the IDE includes a System Builder tool, which enables the management of QNX images. It

replaces the “build” files with a graphical tool to create images (both boot images and flash images) and

allows the importing of existing build files. The System Builder tool features dependency analysis (tells

you which libraries might be missing), as well as a “dietician”, which creates smaller versions of the shared

libraries you’re using that only contain the functions you need.

The System Builder tool works reasonably fast and is pretty easy to use. In the beginning, you will need to

experiment a bit to understand where some modules are located (for instance specific devices are included

in DLLs). This could be improved by adding a comment column in the selection process. Once a module is

included in the System Builder, a comment section shows up in the IDE explaining the usage and options

of the binaries and shared objects (DLLs): this is excellent! The System Builder will also automatically add

the shared libraries needed by the added module in your target system configuration.

The System Builder is best initialized with an existing (simple) build file, which sets then already the basic

configuration in a good shape.

 The “diet” function works very well and is something we haven’t found on any other graphical platform

builder yet. Of course to “diet” shared libraries is a slow process (checking all dependencies), but this is

something that needs only to be done at the end of the development cycle.

4.4.3 Building your own BSP

 When installing QNX 6.5 Neutrino, you will notice that a lot of BSP code is delivered in source

code (or can be downloaded from Foundry27).

Relating to licensing, the licensing information associated with any specific driver is specified in the

headers of the source file. QNX typically releases driver source for which they own the IP under Version

2.0 of Apache which allows for broad rights.

If required, you can apply for source access to other source code as well. There are cases where 3rd party

source is used as part of QNX solution where they don’t have rights to distribute the source. Example

areas include but are not limited to wireless drivers, accelerated 2D/3D graphics and codecs.

The major thing that is not delivered in source code is the process manager (procnto): the microkernel of

QNX.

If a driver is supported for one target by QNX, then it can be easily used on any other target (just recompile

the code with the correct compiler).

Of course, you can also make your own device driver, but this is another issue that is not discussed in this

document.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 34 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

4.5 Internet components

Internet components 0

10 8

The QNX Momentics development suite contains the following products and tools:

- An Embedded Web Server. The embedded web server supports CGI 1.1, HTTP 1.1, and dynamic

HTML (via Server Side Include commands).

You can also handle SSI by using a data server. The data server allows multiple threads to share

data: having a process updating the data server about the state of a hardware device while the

embedded web server accesses that state in a decoupled but reliable manner.

- A Web Browser based on the open source WebKit:

- full HTML 4.01 support,

- CSS 2.1 and parts of CSS 3 support,

- javascript (1.5, 1.7 and ECMA-262 3rd edition),

- Document Object Model (DOM Level 1 and 2)

- XML parsing (XHTML 1.1 and XML)

- XSLT and XPath 1.0

- HTML canvas and AJAX

- SMIL 2.2 or 2.3

- Image formats: jpeg, gif, png

- HTTP 1.1, HTTP Cookies

- SSL3/TLS1.0

- SSL Root Certificates Support: VeriSign, Entrust, Thawte, Baltimore.

- Support of externally supplied fonts

- Different character sets

- Another web browser typically used as a help viewer.

- Source is available to build internet-enabled applications into an embedded system.

- Broad networking and protocol support. The reader is referred to the QNX website for detailed

information.

- As it is POSIX compliant, it is possible (and not too difficult) to build open source applications for QNX.

For instance, in our evaluations we used ffmpeg for some tests. We had no problem to build this for

QNX.

- The apache web server is also available for QNX.

- Further QNX has its own SQL database, which is based on sqlite.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 35 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

4.6 Development tools

Development tools 0

10 9

QNX Neutrino 6.5 provides both command line and IDE based development tools on a variety of

host platforms. We used and tested the QNX Momentics IDE based on the (extensible) Eclipse

Framework, on both a Windows and on a Linux host.

Since our previous evaluation (6.3), the Eclipse/Momentics combination has become more resource

friendly. It consumes around the half of the RAM it consumed in our previous evaluation. Also general

performance and usability is improved.

The toolset has become more intuitive, and is one of the better development tools around for cross

development and debugging. Well done!

4.6.1 Basic Development

We used the Eclipse Framework to build our test system. Tools for both self-hosted (QNX host,

with Photon GUI) and cross development are available both on Windows and Linux variants. These

toolkits contain the most commonly used tools. The tools are based on the GNU toolchains (also the

debugger).

The tools work as well on a Linux distribution (we tested it on Ubuntu 9.10, as it was officially supported

by QNX) and Windows. Both have the same look and feel as the java based Eclipse IDE is used as base.

We also created a Virtual Machine (VM) running the QNX RTOS and used it as remote debug target. QNX

runs without any problem in the VM (using VMWare workstation). Remote debugging is very intuitive and

works correctly, although it can sometimes break the connection if you do quickly launch (in debug mode)

and stop applications without leaving enough time to handle this remotely.

As device drivers are application processes as well, they can be debugged similar to any other application.

We found this very useful for debugging our PCI driver: by debugging the PCI server, we found the correct

way to init the BAR regions of our device.

As the BSP is given in source code (and thus the PCI server as well), we could easily step through the

code.

We have one complain when debugging BSP: it seems very difficult to make debug builds without

optimizations for these BSP drivers. For other applications this was easy, but not for the delivered BSP

drivers.

 In our previous report we indicated the heavy use of memory resources by Momentics and Eclipse.

This has been addressed: we had no problem to use the IDE on a (virtual) Windows machine with only

one core and 512MB ram (and the same for a Linux host).

Although one of our previous reports comparing Microsoft’s Visual Studio and (standard) Eclipse (can be

found on downloads sections of dedicated systems website) was not very positive about Eclipse when it

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 36 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

comes to C/C++ development, the way QNX configures Eclipse and adds plug-ins makes this IDE much

more useful.

Aside from the tools listed in the table below, additional tools are available.

- Photon Developer’s toolkit to develop Photon (a small widget toolkit) user interfaces.

- TCP/IP Developer’s toolkit to develop programs for peer-to-peer communication over TCP/IP

connections.

 Present

(Yes/No)

Integrated

in IDE

Standalone Command

based

GUI

based

Editor

Color highlight Yes  

Integrated help Yes  

Automatic code layout Yes  

Compiler

 C Yes    

C++ Yes    

Java Yes    

Ada No

Assembler Yes    

Linker

Incremental Yes    

Symbol table generation Yes    

Development tools

Profiler Yes    

Project management Yes  

Source code control
10

 Yes    

10

 The Momentics IDE supports SVN (default), CVS and other third-party products via plugins (for instance

Clearcase). With or without a coupled source code control system, the Momentics Source Editor has an automatic

history function where previous saved versions of your source files are stored. At any moment you can compare your

file with some previous one (using a graphical tool) and choose the changes to revert to. The number of days your

history is kept can be adapted.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 37 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

 Present

(Yes/No)

Integrated

in IDE

Standalone Command

based

GUI

based

Revision control Yes    

Debugger

Symbolic debugger Yes    

Thread sensitive

debugging

Yes    

Mixed source and

disassembly

Yes  

Variable inspect Yes    

Structure inspect Yes    

Memory inspect
11

 Yes    

Target connection

JTAG Yes  

BDM No

Serial (via ROM-Monitor

or app?)

No 

Network (via ROM-

Monitor or app?)

Yes  

System analysis tool

Tracing Yes    

Thread information Yes    

Interrupt information Yes    

Loader

TFTP boot loader Yes    

Serial boot loader Yes    

11

 Also a debug malloc tool can be used to run your application against an instrumented version of the malloc library,

which allows you to trace the memory allocations as well as detect common memory-related errors.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 38 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

 Present

(Yes/No)

Integrated

in IDE

Standalone Command

based

GUI

based

Load separate modules Yes
12

  

4.6.2 Extra Tools provided

Besides the normal build/debug environment, QNX did a good job to integrate as well different

tools inside Eclipse. These tools can be very helpful for detecting memory faults, performance problems,

system behaviour and much more. In this section we go a bit deeper into this toolset.

Remark that for all tools, QNX provides example projects combined with a cheat sheet on how to configure

and use a certain tool. As such you can quickly learn how to use these tools. A good tutorial is not

everything; the toolset has to be intuitive enough so you can apply it easily with your project as well. Also

this is something QNX took into account. You get quickly experienced how to use these tools.

If you are limited to the freely provided tools, Eclipse is not a good choice. However, the way QNX

integrates its plug-ins in this IDE shows that such open framework has serious potential and can easily

compete with proprietary tools.

4.6.2.1 Memory Analysis tools

The first tool we are going to discuss is the Memory Analysis tool. This tool can be used to trace

memory events like allocations and releases, which is useful for detecting memory leaks.

The memory leaks have also their back stack traces logged at the moment they were allocated. You can

compare this with the Valgrind memory analysis, but with a graphical user interface and integrated in the

tool-chain.

Detecting memory leaks is of course very important in embedded systems which do not have only a

smaller memory footprint compared with desktop machines, but they should run all the time without any

reboots!

Another aspect of the tool is that it detects usage errors. For this it uses as well some instrumentation of

different string and memory manipulation routines which can easily cause errors when wrongly used.

Further, boundary checks and heap integrity checks can be done. Not all of these kinds of errors can be

redirected to the line where it is introduced (like buffer overruns); however you will find the place in the

source where the block was allocated.

These tools also gather allocation information, so you can finely tune the heap parameters for your

application.

4.6.2.2 Mudflap

This is another memory analysis tool (an open source extension on gcc) which will instrument the

code. It cannot be combined with the other memory analysis tool.

12

 You have direct access to the remote filesystem by the IDE via the network (as long qconn runs on the target).

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 39 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

QNX did also a good job here by integrating the output (which is text base) to a graphical output window

and to link it back to the source code.

4.6.2.3 Code coverage

Code coverage uses the gcc gcov coverage output. Enabling the code coverage on the build

requires manual intervention by changing the compiler settings in the makefile.

On the other side, adding the tool in your run environment will retrieve the coverage logs integrated in the

IDE. As such, the code coverage results are well integrated. You can directly verify in your code which

code lines are not covered yet.

Also it is very easy to combine multiple code coverage sessions in one overall result. So you can detect

which code lines are not yet executed across all your tests.

Last, it is possible to generate an HTML report about the results.

4.6.2.4 Application profiler

There is as well an Application Profiler, which can be used to sample time usage (by statistically

sampling gathering from the kernel) of the different components in the application. It can as well instrument

the code to retrieve call graphs and number of calls.

Both systems can be combined.

It is also possible to compare two running versions (for instance after you made some code optimizations).

4.6.2.5 System profiler

On a higher level, it is possible to profile the system by using the instrumented kernel (this has of

course some performance impact).

Of course, profiling like this will generate a huge number of events. The problem is to find the problem case

in the pile of information. Luckily there are good ways to filter out events (limiting what is displayed) and

complex event search tools available.

Following information can be gathered from this tool (in short any kernel event):

- CPU usage

- CPU migration

- IPC

- All types of events (interrupts, messages, locks, scheduling)

- All kinds of statistics

Events can be viewed in a table, but as well in a timeline. Further, there are different ways to show the

information.

In QNX neutrino 6.5, there is now support to generate custom events. This can be very handy to link traces

with application events so you can quickly find the part of the traces you are interested in. As the kernel

does not has any knowledge on the source code involved, it is not possible to find for instance which

mutex call (line in the source code) generated the event.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 40 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

The fact that such traces can be very useful was proven during our tests. We had a problem with an

interrupt test while loading the processor. By using these kernel traces, it was detected that the interrupt

was shared with the USB driver. The USB driver only enabled the interrupt again in its deferred handler in a

thread. As we were loading the system, this USB thread (having lower priority than ours) could not run and

as such the interrupt stayed masked. Such complex issues are hard to find if you do not have such kernel

event tracing available.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 41 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

5 Appendix A: Vendor comments

All vendor comments were integrated in the document as there were no disagreements.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 r
e

s
e
rv

e
d

,
n

o
 p

a
rt

 o
f

th
e
 c

o
n

te
n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d
 o

r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
 N

V
.

Experts

 QNX 6.5 Page 42 of 42

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

e
m

a
il:

 m
.t
im

m
e

rm
a
n

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc no.: EVA-2.9-OS-QNX-65 Issue: Draft 4.10 Date: Sept 8, 2011

6 Appendix B: Acronyms

Acronym Explanation

API Application Programmers Interface: calls used to call code from a library

or system.

BSP Board Support Package: all code and device drivers to get the OS running

on a certain board

DSP Digital Signal Processor

FIFO First In First Out: a queuing rule

GPOS General Purpose Operating System

GUI Graphical User Interface

IPC Inter-Process Communication

IDE Integrated Development Environment (GUI tool used to develop and

debug applications)

IRQ Interrupt Request

ISR Interrupt Servicing Routine

MMU Memory Management Unit

OS Operating System

PCI Peripheral Component Interconnect: bus to connect devices, used in all

PCs!

PIC Programmable Interrupt Controller

PMC PCI Mezzanine Card

PrPMC Processor PMC: a PMC with the processor

RTOS Real-Time Operating System

SDK Software Development Kit

SoC System on a Chip

