

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 1 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

LINUX 2.6.33.7.2-RT30 ON

X86

© Copyright Dedicated Systems Experts NV. All rights reserved, no part of the

contents of this document may be reproduced or transmitted in any form or by any

means without the written permission of Dedicated Systems Experts NV,

Diepenbeemd 5, B-1650 Beersel, Belgium.

Authors: Luc Perneel (1, 2), Hasan Fayyad-Kazan (2) and Martin Timmerman (1, 2, 3)

1: Dedicated Systems Experts, 2: VUB-Brussels, 3: RMA-Brussels

Disclaimer

Although all care has been taken to obtain correct information and accurate test

results, Dedicated Systems Experts, VUB-Brussels, RMA-Brussels and the authors

cannot be liable for any incidental or consequential damages (including damages

for loss of business, profits or the like) arising out of the use of the information

provided in this report, even if these organisations and authors have been advised

of the possibility of such damages.

http://www.dedicated-systems.com

E-mail: info@dedicated-systems.com

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 2 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

EVALUATION REPORT LICENSE

This is a legal agreement between you (the downloader of this document) and/or your company and the
company DEDICATED SYSTEMS EXPERTS NV, Diepenbeemd 5, B-1650 Beersel, Belgium.
It is not possible to download this document without registering and accepting this agreement on-line.

1. GRANT. Subject to the provisions contained herein, Dedicated Systems Experts hereby grants you a non-

exclusive license to use its accompanying proprietary evaluation report for projects where you or your company
are involved as major contractor or subcontractor. You are not entitled to support or telephone assistance in
connection with this license.

2. PRODUCT. Dedicated Systems Experts shall furnish the evaluation report to you electronically via Internet. This

license does not grant you any right to any enhancement or update to the document.

3. TITLE. Title, ownership rights, and intellectual property rights in and to the document shall remain in Dedicated

Systems Experts and/or its suppliers or evaluated product manufacturers. The copyright laws of Belgium and all
international copyright treaties protect the documents.

4. CONTENT. Title, ownership rights, and an intellectual property right in and to the content accessed through the

document is the property of the applicable content owner and may be protected by applicable copyright or other
law. This License gives you no rights to such content.

5. YOU CANNOT:

– You cannot, make (or allow anyone else make) copies, whether digital, printed, photographic or others, except
for backup reasons. The number of copies should be limited to 2. The copies should be exact replicates of the
original (in paper or electronic format) with all copyright notices and logos.

– You cannot, place (or allow anyone else place) the evaluation report on an electronic board or other form of on
line service without authorisation.

6. INDEMNIFICATION. You agree to indemnify and hold harmless Dedicated Systems Experts against any damages

or liability of any kind arising from any use of this product other than the permitted uses specified in this
agreement.

7. DISCLAIMER OF WARRANTY. All documents published by Dedicated Systems Experts on the World Wide Web

Server or by any other means are provided "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. This disclaimer of
warranty constitutes an essential part of the agreement.

8. LIMITATION OF LIABILITY. Neither Dedicated Systems Experts nor any of its directors, employees, partners or

agents shall, under any circumstances, be liable to any person for any special, incidental, indirect or
consequential damages, including, without limitation, damages resulting from use of OR RELIANCE ON the
INFORMATION presented, loss of profits or revenues or costs of replacement goods, even if informed in advance
of the possibility of such damages.

9. ACCURACY OF INFORMATION. Every effort has been made to ensure the accuracy of the information presented

herein. However Dedicated Systems Experts assumes no responsibility for the accuracy of the information.
Product information is subject to change without notice. Changes, if any, will be incorporated in new editions of
these publications. Dedicated Systems Experts may make improvements and/or changes in the products and/or
the programs described in these publications at any time without notice. Mention of non-Dedicated Systems
Experts products or services is for information purposes only and constitutes neither an endorsement nor a
recommendation.

10. JURISDICTION. In case of any problems, the court of BRUSSELS-BELGIUM will have exclusive jurisdiction.

Agreed by downloading the document via the internet.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 3 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

1 Document Intention .. 6

1.1 Purpose and scope .. 6

1.2 Document issue: the 2.9 framework .. 6

1.3 Conventions ... 6

Related documents .. 7

2 Introduction .. 8

2.1 Overview .. 8

2.2 Evaluated (RTOS) product ... 9

2.2.1 Software ... 9

2.2.2 Hardware .. 9

3 Evaluation results summary ... 10

3.1 Positive points .. 10

3.2 Negative points .. 10

3.3 Ratings ... 11

4 Test Results ... 12

4.1 Calibration system test (CAL) .. 12

4.1.1 Tracing overhead (CAL-P-TRC) ... 12

4.1.2 CPU power (CAL-P-CPU) .. 13

4.2 Clock tests (CLK) ... 15

4.2.1 Operating system clock setting (CLK-B-CFG) ... 15

4.2.2 Clock tick processing duration (CLK-P-DUR) .. 15

4.3 Thread tests (THR) .. 17

4.3.1 Thread creation behaviour (THR-B-NEW) ... 17

4.3.2 Round robin behaviour (THR-B-RR) .. 18

4.3.3 Thread switch latency between same priority threads (THR-P-SLS) 19

4.3.4 Thread creation and deletion time (THR-P-NEW) .. 22

4.4 Semaphore tests (SEM) ... 26

4.4.1 Semaphore locking test mechanism (SEM-B-LCK) ... 26

4.4.2 Semaphore releasing mechanism (SEM-B-REL) ... 26

4.4.3 Time needed to create and delete a semaphore (SEM-P-NEW) ... 26

4.4.4 Test acquire-release timings: contention case (SEM-P-ARN) ... 29

4.4.5 Test acquire-release timings: contention case (SEM-P-ARC) ... 31

4.5 Mutex tests (MUT) .. 34

4.5.1 Priority inversion avoidance mechanism (MUT-B-ARC) .. 34

4.5.2 Mutex acquire-release timings: contention case (MUT-P-ARC) .. 34

4.5.3 Mutex acquire-release timings: no-contention case (MUT-P-ARN) 36

4.6 Interrupt tests (IRQ) ... 38

4.6.1 Interrupt latency (IRQ_P_LAT) ... 38

4.6.2 Interrupt dispatch latency (IRQ_P_DLT) .. 39

4.6.3 Interrupt to thread latency (IRQ_P_TLT) .. 39

4.6.4 Maximum sustained interrupt frequency (IRQ_S_SUS) ... 40

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 4 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.7 Memory tests .. 41

4.7.1 Memory leak test (MEM_B_LEK) ... 41

5 Support .. 42

6 Appendix B: Acronyms .. 43

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 5 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

DOCUMENT CHANGE LOG

Issue

No.

Revised

Issue Date

Para's / Pages

Affected

Reason

for Change

1.0 25 Mar 2011 All Initial version

1.01 2 April 2011 some Typo changes

1.02 14 April 2011 ALL Rephrasing some statements and commenting

1.03 03 May 2011 ALL idem

1.04 05 May 2011 ALL Idem

1.05 13 May 2011 ALL Almost-Final

1.06 16 May 2011 ALL Almost-Final + just few changes more

1.07 30 May 2011 All Final

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 6 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

1 Document Intention

1.1 Purpose and scope

This document presents the quantitative evaluation results of the real-time Linux operating system

(Linux with its real-time patches). The testing results of this operating system employed on an x86

processors can be found on our website. (www.dedicated-systems.com)

The layout of this report follows the one depicted in “The OS evaluation template” [Doc. 4]. The test

specifications can be found in “The evaluation test report definition” [Doc. 3]. See section 0 of this

document for more detailed references. These documents have to be seen as an integral part of this report!

Due to the tightly coupling between these documents, the framework version of “The evaluation test report

definition” has to match the framework version of this evaluation report (which is 2.9). More information

about the documents and tests versions together with their corresponding relation between both can be

found in “The evaluation framework”, see [Doc. 1] in section 0 of this document.

The generic test code used to perform these tests can be downloaded on our website by using the link in

the related documents section.

1.2 Document issue: the 2.9 framework

This document shows the test results in the scope of the evaluation framework 2.9.

1.3 Conventions

Throughout this document, we use certain typographical conventions to distinguish technical terms.

Our used conventions are the following:

 Bold Italic for OS Objects

 Bold for Libraries, packets, directories, software, OSs...

 Courier New for system calls (APIs...)

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 7 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

Related documents

Those are the documents that are closely related to this document. They can all be downloaded using

following link:

http://www.dedicated-systems.com/encyc/buyersguide/rtos/evaluations

Doc. 1 The evaluation framework
This document presents the evaluation framework. It also indicates which documents are
available, and how their name giving, numbering and versioning are related. This document is
the base document of the evaluation framework.
EVA-2.9-GEN-01 Issue: 1 Date: April 19, 2004

Doc. 2 What is a good RTOS?
This document presents the criteria that Dedicated Systems Experts use to give an operating
system the label “Real-Time”. The evaluation tests are based upon the criteria defined in this
document.
EVA-2.9-GEN-02

Doc. 3 The evaluation test report definition
This document presents the different tests issued in this report together with the flowcharts
and the generic pseudo code for each test. Test labels are all defined in this document.
EVA-2.9-GEN-03 Issue: 1 April 19, 2004

Doc. 4 The OS evaluation template
This document presents the layout used for all reports in a certain framework.
EVA-2.9-GEN-04 Issue: 1 April 19, 2004

Doc. 5 Linux 2.6.33.7.2-RT30
This document presents the qualitative discussion of the OS
1EVA-2.9-OS-LNX-104 Issue: 1 May 13, 2011

http://www.dedicated-systems.com/encyc/buyersguide/rtos/evaluations

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 8 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

2 Introduction

This chapter talks about: 1) the OS that we are going to test and evaluate, 2) the real time patch

integrated in this OS to achieve some real time performance and behaviour tests, 3) the library used for

interaction between the testing applications and the kernel, 4) the hardware on which the under testing OS

will be employed.

2.1 Overview

The evaluation project started in 1995 and as such accumulates a long experience with different

(RT) OS. Today more and more embedded systems are equipped with Linux solutions using more or less

real-time patches. Different vendors like MontaVista, Windriver, and Lynuxworks have now Linux variants

in their product portfolio.

Since the kernel version 2.4, a lot of improvements regarding real-time behaviour found their way into the

standard “Vanilla” kernel. There is a well maintained real-time patch available (both have their origins from

Ingo Molnar) called RT_PREEMPT patch. Remark that some real-time features (like priority-inheritance

mutexes, introduced in version 2.6.18) are already in the Vanilla kernel.

We believed that it is the time to test this kernel by our standard real-time behaviour evaluation framework

and find out how well it behaves.

For this evaluation, we used the standard glibc library as the µClibc package does not include yet the

Native POSIX Thread Library (NPTL). Moreover, µClibc also does not use futexes which means that it

also does not have any support for priority inheritance (which must be available when considering real-time

behaviour). Further µClibc uses internal protection systems (mutex, semaphores) and signals for the

pthread POSIX layer, which behaves differently while compared to the usage of direct NPTL calls. From

a real-time point of view, using µClibc in its current form makes the kernel real-time support unavailable in

user space. It has to be said that there is an active NPTL branch in the µClibc code base. Therefore we

suspect that it is only a matter of time before it will become available in the official releases.

It is a pity that the µClibc wagon is not yet on the NPTL rail. Using the buildroot, µClibc, and busybox

combo makes it easier to have an embedded Linux platform with a small storage footprint. But without the

NPTL support, real-time applications cannot be used in user space, unless you use direct system calls to

the kernel.

Remark that the RT_PREEMPT patch degrades throughput performance which means that it should be

used only when your project has low latency requirements. This is normal and a fundamental rule in real-

time software: latency improvements have a negative impact on throughput and vice versa. Some quick

measurements using an NFS mount stressing network and disk showed a negative throughput impact

between 5 and 10% by enabling the RT_PREEMPT patch!

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 9 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

2.2 Evaluated (RTOS) product

2.2.1 Software

The operating system OS that will be evaluated is Vanilla Linux 2.6.33.7 with real-time patch

v30.This RT patch was the latest version officially released by OSADL (the Open Source Automation

Development Lab) on December 21, 2010. Being as OSDAL’s latest stable release was our main reason

for testing this version. The RT patches can be found at http://www.kernel.org/pub/linux/kernel/projects/rt/.

The evaluation of this kernel version (2.6.33.7.2-rt30) was performed using several performance and

behaviour tests. The testing results are applicable only to this version as other versions may have other

significant performance figures and behaviour.

The library used between the testing applications and the kernel is the glibc version 2.11.1 as mentioned

before. This interfacing library is important because user applications (when using POSIX calls) can access

the real-time features of the kernel only if this library supports them. Otherwise, direct system calls in user

space applications are needed.

2.2.2 Hardware

The operating system was tested on our standard x86 Pentium MMX evaluation platform running at

200MHz with 128MB RAM. So we can compare the results with other RTOS tested on the same platform.

This platform is already pretty old (from 1997 to be correct), but its advantage is that it makes tests

comparable as we have tested all RTOS for more than a decade on this platform. Also there is no impact

from BIOS interrupts (motherboard/BIOS is too old).

http://www.kernel.org/pub/linux/kernel/projects/rt/

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 10 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

3 Evaluation results summary

Remember that the tested and evaluated product is Vanilla Linux 26.33.7 with RT_PREEMPT

patch v30. If correctly used and configured, the RT_PREEMPT Linux system has the internals to provide

some real-time characteristics.

Compared with the traditional RTOS that supports also memory protection between processes, the worst

case latencies in Linux RT_PREEMPT are still around 5 to 10 times slower (depending on the RTOS you

compare with). Our study and measurements show the latencies are bound and therefore this Linux

version may be labelled Real-Time.

TAKE CARE: Using a wrong driver or wrong configuration can destroy real-time behaviour. You

need to follow the detailed rules described in the relevant document (Doc 5).

3.1 Positive points

 No license fees

 Source code available

 Extensible

3.2 Negative points

 The real-time characteristics of the OS are present only when everything is configured and built

correctly (and not for all drivers)

 GPL license is not completely free…

 Setting up a complete embedded target from scratch is a daunting task.

 uClibc, which is used a lot in embedded systems, does not have currently NTPL support and as

such cannot provide real-time characteristics to the user level. Thus, glibc should be used.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 11 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

3.3 Ratings

For a description of the ratings, see [Doc. 3].

RTOS Architecture 0

10 6

OS Documentation 0

10 4

OS Configuration 0

10 6

Internet Components 0

10 10

Development Tools 0

10 6

Installation and BSP 0

10 4

Test Results 0

10 4

Support 0

10 N.A.

dd

Although [Doc. 3] gives a description of the ratings, comparison with other reports on other OS should help you

understand the scoring.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 12 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4 Test Results

Test Results 0

10 4

Compared with traditional RTOS supporting inter-process memory as well, the worst case latencies

in Linux RT_PREEMPT are around 5 to 10 times greater (depending on the RTOS you compare with). Still

they are inbound and thus considered as real-time!

However, using wrong configuration (at build and/or at runtime) or incorrect behaving drivers can still

destroy the potential real-time behaviour.

One of the items that are surely candidate to be improved is the clock tick interrupt duration, which is the

Achilles’ heel of Linux RT_PREEMPT.

4.1 Calibration system test (CAL)

These tests are used to calibrate the tracing overhead compared with the processing power of the

platform. This is important to understand the accuracy of the measurements done in scope of this report.

They are also used for measuring the processing power of the platform. This calibration permits

comparison with the results on other platforms.

4.1.1 Tracing overhead (CAL-P-TRC)

This test calibrates the tracing system overhead. This is more hardware than OS related, but it is

needed to correct the measured times.

In the rest of this document, the tracing overhead is subtracted from the results obtained.

Tracing accuracy depends here on the PCI clock (33MHz), as this is the minimum time frame that can be

detected. In general, the results in this document are correct to +/- 0.2 µseconds. Therefore the results

shown in the tables are rounded to 0.1 microseconds.

4.1.1.1 Test results

Test result

Average tracing overhead 209 nsec

minimum tracing overhead 209 nsec

maximum tracing overhead 209 nsec

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 13 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.1.2 CPU power (CAL-P-CPU)

This test will calibrate the CPU performance and the memory bandwidth of the used platform. This

test is measured in different situations, from the situation where code and data are cached, until the

situation where neither code nor data are cached. With such different situation tests, the effects of the

cache can be calculated.

We have been seriously reworking this test lately. The CPU test uses only one data address; The non-

cached version is about 172KB in size (instructions), while the cached version uses a loop (a bit unrolled to

have a small loop overhead but so it fits in the L1 I-cache and it uses only two data words). The instruction

cache test is done twice:

 The instructions have not been mapped yet(leading to TLB exceptions and page faults)

 There will not be any page faults (TLB exceptions will still happen).

This gives us a “feeling” about the impact of page faults, even if the test software is launched from a RAM

file system and uses mlockall.

Further, we divided the data cache tests into a read test (reading content of a large array in non-cached

case, and read a small array in a loop in the cached case) and a write test. Remark that we flush the

caches in between the tests.

This rework shows that a worst-case / best-case scenario can cause significant performance impacts,

something that in reality will almost surely never be that large (or you should be able to run everything

using only L1 caches).

Due to the rework, the impact of being/ or not being in the I-Cache has enlarged enormously compared

with previous tests.

Remark that the results of such tests will depend also to a high extent on the cache organisation:

 Number of ways

 Line size

 Number of address bits used for index

 Virtual or physical addresses used as index.

Further, we can adapt the test for CPU which has larger cache sizes as the arrays have to be larger than

the cache size (across all levels).

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 14 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.1.2.1 Test results

The results for our standard platform (Pentium MMX 200 MHz) are shown below:

Test no cache cached cache effect

CPU test: first load, page faults 1562 us 272.7 us

CPU test: ICache effect 1504 us 271.7 us 5.5

MEM write test 815.2 us 738.6 us 1.1

MEM read test 1355 us 817.1 us 1.7

Average caching effect (CPU and MEM) 2.8

Here are some conclusions regarding the Pentium MMX 200MHz:

 Caching of instructions has a huge impact! This is logical because for each instruction,

memory has to be fetched containing this instruction. When handling data, you will always

have some instructions without data access (register manipulations and operations) which

are not impacted by the data cache.

 Compared with the situation of the instructions absence in the cache, page faults are a

minor issue (in this case around 5%). Remark that we are running from a RAM file system

and that the page fault handler will be in the cache anyhow during this load.

 Caching does NOT have a huge impact on data writes: writes can be postponed, so they do

not block the next instructions in the pipeline from executing.

 Caching has a huge impact on data reads: instructions have to wait until the data becomes

available. This will take longer if this data is not cached compared to the case where it is.

Remark that even if the data is cached, it might take somewhat longer to get compared to

write case (due to a postponed write).

Clearly, interrupt handlers and other code with real-time requirements can be much slower if they are not in

the cache.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 15 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.2 Clock tests (CLK)

The clock test measures the time that an operating system needs to handle its clock interrupt. On

the tested platform, the clock tick interrupt is set on the highest hardware interrupt level, interrupting any

other thread or interrupt handler.

4.2.1 Operating system clock setting (CLK-B-CFG)

This test is done in order to examine the setting of the clock tick period in the operating system.

This test shows the default clock timing as they are set by the BSP and/ or the kernel.

For this test, the nanosleep () POSIX function call is used. Following POSIX, the delay should be based

on the clock tick. The “nanosleep” function always pauses for at least its specified time, but however it

can take up to one clock tick more than its specified time until the process becomes run-able again”.

As the kernel is running at 1000Hz, we expect a clock interrupt each ms. The following table shows the

test results.

Test result

Test succeeded Yes

Tested clock period 1ms

Clock period adaptable YES (by kernel config)

4.2.2 Clock tick processing duration (CLK-P-DUR)

This test is done for examining the clock tick processing duration in the kernel. The test results are

extremely important, as the clock interrupt will disturb all the other performed measurements. Using a

tickless kernel will not even prevent this from happening (it will only lower the number of occurrences). The

kernel under test was not using the tickless timer option.

The bottom line of the figures in section 4.2.2.2 represents the normal loop time of the test if no clock

interrupt occurs during the test loop. The upper line is generated by the samples when a clock interrupt

occurred during the loop. The difference between the two lines is the clock tick processing duration.

 A clock time duration of about 20 µs is measured, which is bad compared with the traditional RTOS

(at least a factor 5 to even 10). This clock will impact all other real-time behaviour and measurements.

This was the main reason for doing this as an initial measurement. Running tests that flush the instruction

and data Cache increase this further. We detected durations up to 55us in our tests.

Comparing this with the kernel version 2.4 which had clock tick duration of around 8µs on this platform

shows that this should be much better. Clearly, this is the critical path of the current real-time behaviour as

all other issues have been improved vastly compared with the older kernels.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 16 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.2.2.1 Test results

Test result

CLOCK_LOOP_COUNTER 10000

Normal busy loop time 124 µs

Busy loop time with clock interrupt 143 µs, worst case 145 µs

Clock interrupt duration 19 µs to 21µs, detected in some tests up

to 55µs impact.

4.2.2.2 Diagrams

Figure 1: RTOS clock tick duration (1)

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 17 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

Figure 2: RTOS clock tick duration (2)

4.3 Thread tests (THR)

These tests are used to measure the performance of the scheduler.

 Although most of the tests run pretty stable (deterministic), we found some strange issues:

 The queuing behaviour on the ready queue while using SCHED_FIFO or SCHED_RR policy

is different

 The first Round-Robin time slice of thread execution takes almost ten times more than the

normal time slice.

 The first thread being deleted before it ever run in a process took consistently takes around

5ms, which is about 15 times longer than the other cases.

In real-time design, it is a bad practice to: 1) dynamically create and terminate threads, 2) use multiple real-

time threads on the same priority. Therefore, these problems should not popup in a good real-time OS

designs but also shouldn’t be avoided or ignored by real-time OS designers.

4.3.1 Thread creation behaviour (THR-B-NEW)

This test will examine the behaviour of creating threads. Does the operating system behave as it

should be as long as it is considered being a real-time operating system?

This test succeeded, however we noticed again a different behaviour when using the SCHED_FIFO

compared to the SCHED_RR class! When lowering the priority of a thread:

 It will become in the front of the ready queue if running in SCHED_RR policy

 It will become at the tail of the ready queue if running in SCHED_FIFO policy

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 18 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

Not that this is fundamental issue as it is not a good practice in real-time design to use the same priority for

different threads. But it is still something to keep in mind.

4.3.1.1 Test results

Test result

Test succeeded YES

Lower priority not activated? YES

Same priority at tail? This depends if SCHED_FIFO or SCHED_RR

scheduling class is used for the threads:

RR puts it in front of its ready queue

FIFO puts it at tail of its ready queue

Yielding works? YES

Higher priority activated? YES

4.3.2 Round robin behaviour (THR-B-RR)

This test checks if the scheduler uses a fair Round Robin mechanism when threads are having

the same priority and all of them are in the ready-to-run state (and using the SCHED_RR scheduling

policy)!

 A problem was discovered here with the time slicing mechanism. When a thread is created (and

thus put at the front of the ready queue) it seems to run for around 1s before giving the CPU back to the

next thread in the ready queue with same priority.

Once all the threads are running, the time slice goes back to a 10Hz frequency.

This can be clearly seen in the trace file when this test is done with 10 threads:

 Sample TimeAbs TimeRel Data

 TRIG: 0.0ns 0.0ns F0000009

 1: 983.67ms 983.67ms F0000008

 2: 1.967s 983.67ms F0000007

 3: 2.951s 983.67ms F0000006

 4: 3.935s 983.67ms F0000005

 5: 4.918s 983.67ms F0000004

 6: 5.902s 983.67ms F0000003

 7: 6.886s 983.67ms F0000002

 8: 7.869s 983.67ms F0000001

 9: 8.853s 983.67ms F0000000

 10: 9.837s 983.67ms F0000009

 11: 9.936s 99.438ms F0000008

 12: 10.04s 99.438ms F0000007

 13: 10.14s 99.438ms F0000006

 14: 10.23s 99.438ms F0000005

Trace extract showing strange round robin behaviour.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 19 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.3.2.1 Test results

Test result

Test succeeded NO: first yield upon thread creation uses 983ms and

next yields take 99ms!

RR Time slice following this test 100 ms

4.3.3 Thread switch latency between same priority threads (THR-P-SLS)

This test measures the time to switch between threads of the same priority. Therefore, threads

have to yield the processor voluntary for the other threads for using it.

In this test, we use the SCHED_FIFO policy; otherwise it would be possible that a Round-Robin clock

event occurs between the yield and the trace, so that the thread activation is not seen in the trace.

This test was performed several times, and each time using a higher number of threads in order to

generate the worst case behaviour. If more threads are active, the caching effect will be obvious in a way

that the thread context will not reside anymore in the cache once we have enough threads (on this platform

the caches are only 16K, both for the data as the instruction cache).

Further you will see clearly the influence of clock interrupts (causing the maximum values in the graphics).

As loading/starting the test software passes a lot of code and data in the kernel, the next clock interrupt will

not be cached (causing the 50µs delay for the first clock tick in the 2/10 thread scenario). Once there are

enough running threads, the clock interrupt will always be un-cached (at least data part of it) and thus for

the 128/1000 thread tests, the clock interrupts always generate a delay of approximately 50µs.

For the rest, the thread switch latency is a fairly stable line, which is good.

4.3.3.1 Test results

Test result

Test succeeded YES

Test Sample qty Avg Max Min

Thread switch latency, 2 threads 14099 5.3 µs 53.8 µs 4.8 µs

Thread switch latency, 10 threads 16379 7.3 µs 54.4 µs 6.7 µs

Thread switch latency, 128 threads 16320 11.4 µs 49.0 µs 9.2 µs

Thread switch latency, 1000 threads 15917 13.4 µs 53.4 µs 10.6 µs

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 20 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.3.3.2 Diagrams

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 21 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 22 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.3.4 Thread creation and deletion time (THR-P-NEW)

This test examines the time for creating a thread, and the time for deleting a thread in different scenarios:

 Scenario 1 “never run”: The created thread has a lower priority than the creating thread and

is deleted before it has any chance to run. No thread switch occurs in this test.

 Scenario 2 “run and terminate”: The created thread has a higher priority than the creating

thread and will be activated. The created thread immediately terminates itself (thread does

nothing).

 Scenario 3 “run and block”: The same as the previous scenario (scenario 2: run and

terminate), but the created thread does not terminate (it lowers its priority when it is

activated).

In the scenarios where the thread actually runs (2, 3), the creation time is the duration from the system call

creating the thread to the time when the created thread is activated. For the “never run” scenario, the

creation time is the duration of the system call.

Here we found a case that consistently took around 5 ms to handle: in the scenario of creating a thread and

deleting it again before it ever run (scenario 1), the first thread requires always 5 ms to be deleted.

We adapted the test aiming to figure out how we could avoid this delay, but all the tests always produce

this situation. This means that there is a specific behaviour in the kernel (or libraries) that is causing this

corner case.

4.3.4.1 Test results

Test result

Test succeeded YES

Test Sample qty Avg Max Min

Thread creation, never run 7500 213.4 µs 621.µs 188.3 µs

Thread deletion, never run 7500 371.7 µs 5044 µs 342.4 µs

Thread creation, run and terminate 7500 339.7 µs 738.5 µs 304.1 µs

Thread deletion, run and terminate 7500 13.7 µs 60.1 µs 11.7 µs

Thread creation, run and block 7500 347.1 µs 736.6 µs 312.7 µs

Thread deletion, run and block 7500 211.8 µs 268.7 µs 89.0 µs

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 23 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.3.4.2 Diagrams

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 24 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 25 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 26 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.4 Semaphore tests (SEM)

This test examines the performance and the behaviour of the counting semaphore. The counting

semaphore is a system object that can be used to synchronize threads.

4.4.1 Semaphore locking test mechanism (SEM-B-LCK)

In this test, we will experiment if the counting semaphore locking mechanism works as it is

expected to do. The P () call should block only when the count is zero. The V () call should increment

the semaphore counter. In the case where the semaphore counter is zero, the V () call should cause a

rescheduling in the kernel: indeed blocked threads may become active.

The semaphore behaves correctly as a protection mechanism.

4.4.1.1 Test results

Test result

Test succeeded YES

Maximum semaphore value? Limited by the “int” type

Rescheduling on free? OK

4.4.2 Semaphore releasing mechanism (SEM-B-REL)

This test verifies that the highest priority thread being blocked on a semaphore will be released by

the release operation. This should be independent of the order of the acquisitions taking place.

This Linux version passed this test.

4.4.2.1 Test results

Test result

Test succeeded YES

4.4.3 Time needed to create and delete a semaphore (SEM-P-NEW)

This test is done to get an insight about the time needed to create a semaphore and the time to

delete it. The deletion time is checked in two cases:

 The semaphore is used between the creation and deletion.

 The semaphore is NOT used between the creation and deletion.

For a good RTOS it is expected that there is no difference between the two scenarios. If a difference is

detected, then this probably means that the OS handles some initializations on the semaphore on its first

use (making the first use slower).

Anyhow, the tests show that no kernel interaction is needed to create/delete semaphores. The duration of

this time is just too small to be measured. The peaks we see are caused by clock interrupts (20/50us).

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 27 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

Remark that we do not use “named” semaphores, so they cannot be used between processes. Therefore

no access to the kernel is required.

4.4.3.1 Test results

Test result

Test succeeded YES

Test Sample qty Avg Max Min

Semaphore creation time, used 7500 <0.1 µs 19.3 µs <0.1 µs

Semaphore deletion time, used 7500 <0.1 µs <0.1 µs <0.1 µs

Semaphore creation time, never used 7500 <0.1 µs 57.2 µs <0.1 µs

Semaphore deletion time, never used 7500 <0.1 µs 0.3 µs <0.1 µs

4.4.3.2 Diagrams

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 28 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 29 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.4.4 Test acquire-release timings: contention case (SEM-P-ARN)

Here we test the acquisition and release time in the non-contention case. As in this test case the

semaphore does not neither block nor cause any rescheduling (thread switch), the duration of the call

should be very short.

In fact, the library will only need to increase or decrease the semaphore counter in an atomic way (thus no

system call involved). That’s why it is too small to be measured.

The clock tick spike is always present

4.4.4.1 Test results

Test result

Test succeeded YES

Test Sample qty Avg Max Min

Semaphore acquisition time, no contention 7500 <0.1 µs 58.0 µs <0.1 µs

Semaphore release time, no contention 7500 <0.1 µs 26.1 µs <0.1 µs

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 30 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.4.4.2 Diagrams

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 31 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.4.5 Test acquire-release timings: contention case (SEM-P-ARC)

This is performed to test the time needed to acquire and release a semaphore, depending on the

number of threads blocked on the semaphore. It measures the time in the contention case this case

happens when the acquisition and release system call causes a rescheduling to occur.

The aim of this test is to verify whether the number of blocked threads has an impact on these timings or

not. So this will answer the question: “how much time the operating system needs to find out the next

thread to schedule”.

As each thread has a different priority, the question is how these pending thread priorities on a semaphore

are handled. To have a more clear view on our test, you can take a look on the expanded diagrams during

a small time frame (e.g. one test loop):

 We create 90 threads with different priorities. The creating thread has a lower priority than

the threads being created.

 When the thread starts execution, it tries to acquire the semaphore; but as it is taken, the

thread stops and the kernel switch back to the creating thread. The time from the acquisition

try (which fails) until the creating thread is activated again is called here the “acquisition

time”. Thus this time includes the thread switch time.

Thread creation takes some time, so the time between each measurement point is large.

 After the last thread is created and blocked on the semaphore, the creating thread starts to

release the semaphore. This happens the same number of times as there are blocked

threads.

 We start timing at the moment the semaphore is released which in turn will activate the

pending thread with the highest priority, which will stop the timing (thus again the thread

switch time is included).

Now, the most important part of this test is to see if the number of threads pending on a semaphore has an

impact on release times. Clearly, it doesn’t, so this is good.

As usual we find the clock tick back in these diagrams, however now we see something strange: it seems

that the clock tick can loop a number of times, as we see clearly the distinct lines separated by clock tick

duration. This is something strange… and it impacts real-time behaviour.

4.4.5.1 Test results

Test result

Test succeeded YES

Max number of threads

pending

90 (close to the number of priority levels)

Test Sample qty Avg Max Min

Semaphore acquisition time, contented 1021 24.01 µs 219.4 µs 18.5 µs

Semaphore release time, contented 1021 36.9 µs 301.2 µs 14.0 µs

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 32 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.4.5.2 Diagrams

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 33 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 34 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.5 Mutex tests (MUT)

Here we are going to test the performance and behaviour of the mutual exclusive semaphore.

Although the mutual exclusive semaphore (further called mutex) is mostly explained as being the same as

a counting semaphore where the count is one, this is not true. A mutex has a totally different behaviour

than semaphores. Mutexes have the concept of “lock owner”, and thus they can be used for preventing

priority inversions. This is something that cannot be done by semaphores. Therefore it is a bad idea to use

semaphores as a critical section protection mechanism.

In scope of the framework, this test will look into detail of a mutex system object that avoids priority

inversion.

4.5.1 Priority inversion avoidance mechanism (MUT-B-ARC)

This test will determine if the system call under test prevents the priority inversion case. Therefore

the test will artificially create a priority inversion.

As this is one of the first RT_PREEMPT achievements going into the mainstream kernel, we did not expect

any problems. Priority inversion behaves as expected.

4.5.1.1 Test results

Test result

Priority inversion avoidance

system call present

Yes

System call used pthread_mutex_lock

Test succeeded YES

Priority inversion avoided YES

Mechanism used if any? pthread_mutexattr_setprotocol: PTHREAD_PRIO_INHERIT

4.5.2 Mutex acquire-release timings: contention case (MUT-P-ARC)

This is the same test as above, but performed in a loop. In this case, the time is measured to acquire and

release the mutex in the priority inversion case.

Remark that the acquisition enforces a thread switch. The acquiring thread is blocked and the one having

the lock is released. The time is measured from the request for the mutex acquisition to the lower priority

thread having the lock being activated.

Before the release, an intermediate priority level thread is activated (between the low priority one having

the lock and the high priority one asking the lock). Due to the priority inheritance, this thread does not start

to run (the low priority thread having the lock inherited the high priority of the thread asking the lock).

The release time is measured from the release call to the thread requesting the mutex being activated.

 We see that the release seem to cause a double thread switch (time take double as long), which is

very strange! None of the other tested RTOS had such behaviour.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 35 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.5.2.1 Test results

Test result

Test succeeded Yes

Test Sample qty Avg Max Min

Mutex acquisition time, contention 7500 33.2 µs 84.3 µs 29.7 µs

Mutex release time, contention 7500 66.1 µs 120.9 µs 60.1 µs

4.5.2.2 Diagrams:

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 36 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.5.3 Mutex acquire-release timings: no-contention case (MUT-P-ARN)

This test measures the overhead of using a lock when it is not locked by another thread. Good

designed software will use non-contended locks most of the time and only in some rare cases the lock will

be taken by another thread.

Therefore, it is important that the non-contention case should be fast. Remark that this is only possible if

the CPU supports some type of atomic instruction! We have seen Linux running on embedded CPUs that

did not have an atomic instruction, which in this case requires a call to the kernel! On such platforms the

performance of multi-threaded application, which require locks, is seriously impacted! We observed once

an extreme case, where approximately half of the CPU load was caused by the lock-need-to-go-to-the-

kernel calls!

As expected, this doesn’t take a lot of time, although it takes more time than a semaphore. Maybe the

default mutex attribute is not the FAST one? A mutex can be configured with different options: recursive,

error checking and so one, which can increase the time required to take/release a lock.

As in all diagrams, the clock tick shows up again.

4.5.3.1 Test results

Test result

Test succeeded Yes

Test Sample qty Avg Max Min

Semaphore acquisition time, no contention 7500 0.7 µs 20.8 µs 0.6 µs

Semaphore release time, no contention 7500 0.4 µs 55.8 µs 0.4 µs

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 37 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.5.3.2 Diagrams:

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 38 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.6 Interrupt tests (IRQ)

The performance of the interrupt handling in the operating system and hardware is tested here.

In a real-time system, interrupt handling is a major part of the system. Indeed, such systems are typically

event driven.

For these tests, our standard tracing system is adapted. Interrupts are generated by a plugged-in PCI

related card (can be PMC/PCI or CPCI). This card has a complete independent processor on board, with

custom-made software. As such, we can guarantee that an independent interrupt source is not

synchronised in any way with the platform under test.

Remark that we measure here the best case: we use a real interrupt while the other interrupts use

hardirq thread. Adding an interrupt to thread switch latency will then give you interrupt latencies to the

hardirq threads.

4.6.1 Interrupt latency (IRQ_P_LAT)

This test measures the time it takes to switch from a running thread to an interrupt handler. The

time is measured from the moment the PCI interrupt line goes logically high (= electrical low).

For the rest this looks pretty good, however this test supposes no load and a limited number of interrupts.

The clock time is easily detected again.

4.6.1.1 Test results

Test Sample qty Avg Max Min

Interrupt dispatch latency 10730 8.5 µs 32.4 µs 8.1 µs

4.6.1.2 Diagrams

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 39 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.6.2 Interrupt dispatch latency (IRQ_P_DLT)

This measures the time it takes to switch from the interrupt handler back to the interrupted thread.

4.6.2.1 Test results

Test Sample qty Avg Max Min

Dispatch latency from interrupt handler 10732 2.7 µs 26.1 µs 2.4 µs

4.6.2.2 Diagrams

4.6.3 Interrupt to thread latency (IRQ_P_TLT)

This measures the time it takes to switch from the interrupt handler to the thread that is activated

from the interrupt handler.

This test is done by allowing the interrupt handler to release a blocked thread. This blocking thread has the

highest priority in the system and is blocked by an ioctl waiting for the next interrupt handled by our test

device driver. There is also a low priority thread looping. So the measurement takes the time from the

interrupt handler to the blocked thread (as a consequence this includes a thread switch).

In this case you see much more variation. Also the clock interrupt has its impact (in this case it seems to be

always un-cached: 50µs).

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 40 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.6.3.1 Test results

Test Sample qty Avg Max Min

Latency from ISR to waken-up thread 15000 21.6 µs 76.4 µs 17.2 µs

4.6.3.2 Diagrams

4.6.4 Maximum sustained interrupt frequency (IRQ_S_SUS)

This test measures the probability an interrupt is missed. Is the interrupt handling duration stable

and predictable?

The test is done on three levels:

 100 interrupts, initial phase: a fast test just to see where we have to start searching.

 1 000 000 interrupts, second phase based on the results from the first phase. This test still

takes less than a minute and gives already accurate results.

 1000 000 000 interrupts, takes more than 24 hours: to verify stability, therefore we cannot

run a lot of tests, especially when it comes to large interrupt latencies.

As one can observe in the test results, although the interrupt latency is in the best case 8µs, the clock tick

gives us a serious penalty here. On the long run, you can see that the guaranteed interrupt latency comes

around 150µs. Depending on the drivers being used and loaded on the system, this latency can of course

increase even more.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 41 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

4.6.4.1 Test results

Interrupt

period

#interrupts

generated

#interrupts

serviced

#interrupts

lost

30 µs 1 000 963 37

40 µs 1 000 979 21

50 µs 1 000 994 6

60 µs 1 000 995 5

70 µs 1 000 997 3

80 µs 1 000 998 2

90 µs 1 000 998 2

100 µs 1 000 1 000 0

100 µs 1 000 000 1 000 000 0

100 µs 1 000 000 000 999 999 567 433

150 µs 1 000 000 000 1 000 000 000 0

4.7 Memory tests

This examines the memory leaks of OS.

4.7.1 Memory leak test (MEM_B_LEK)

This test continuously create/remove objects in the operating system (threads, semaphores, mutexes…

etc.).

 The Linux under test passes this test well, no memory leaks were detected.

Test result

Test succeeded YES

Test duration (how long we let the endless loop run) >10h

Number of main test loops done > 50 000

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 42 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

5 Support

Support 0

10 NA

If you use downloaded open source software, you have only the internet as documentation resource

available.

Although a lot of information can be found on the internet, concerning kernel configuration and

RT_PREEMPT it is much more difficult to find adequate and complete documentation.

©

 C
o
p
y
ri
g

h
t
D

e
d
ic

a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

A
ll

ri
g

h
ts

 a
re

 r
e
s
e

rv
e
d
,

n
o
 p

a
rt

 o
f
th

e
 c

o
n
te

n
ts

 o
f

th
is

 d
o

c
u

m
e

n
t

m
a
y
 b

e
 r

e
p
ro

d
u

c
e
d

 o
r

tr
a

n
s
m

it
te

d
 i
n
 a

n
y
 f
o

rm
 o

r
b
y
 a

n
y
 m

e
a

n
s
 w

it
h

o
u
t

th
e
 w

ri
tt

e
n
 p

e
rm

is
s
io

n
 o

f
 D

e
d

ic
a
te

d
 S

y
s
te

m
s
 E

x
p

e
rt

s
.

Experts

 Linux 2.6.33.7.2-RT30 on X86 Page 43 of 43

h
tt
p

:/
/w

w
w

.d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

E
m

a
il:

 i
n
fo

@
d
e

d
ic

a
te

d
-s

y
s
te

m
s
.c

o
m

RTOS Evaluation Project

Doc: EVA-2.9-TST-LNX-x86-107 Issue: draft 1.07 Date: May 30, 2011

6 Appendix B: Acronyms

Acronym Explanation

API Application Programmers Interface: calls used to call code from a library

or system.

BSP Board Support Package: all code and device drivers to get the OS running

on a certain board

DSP Digital Signal Processor

FIFO First In First Out: a queuing rule

GPOS General Purpose Operating System

GUI Graphical User Interface

IDE Integrated Development Environment (GUI tool used to develop and

debug applications)

IRQ Interrupt Request

ISR Interrupt Servicing Routine

MMU Memory Management Unit

OS Operating System

PCI Peripheral Component Interconnect: bus to connect devices, used in all

PCs!

PIC Programmable Interrupt Controller

PMC PCI Mezzanine Card

PrPMC Processor PMC: a PMC with the processor

RTOS Real-Time Operating System

SDK Software Development Kit

SoC System on a Chip

